
LV13090

 Security vulnerabilities of the top ten programming languages

Security vulnerabilities of the top ten programming languages:
C, Java, C++, Objective-C, C#, PHP, Visual Basic, Python, Perl, and Ruby

Stephen Turner

Known-Quantity.com, part of Turner & Associates, Inc.

ABSTRACT

Programming languages are like genetics, in that there are a few ancestors with common

traits that have proliferated. These can be traced back over time. This paper will explore the

common traits between the top ten programming languages, which runs almost 80 percent of

all of software used today. These common traits are both good and bad. In programming, the

bad traits equate to security vulnerabilities that are often exploited by hackers. Many

programmers are not aware of these flaws and do not take the time to take corrective action

as they build software applications. They cannot simply fix the problems at the end; they

must continually adjust how they program throughout the process. This paper will also

provide guidance on what can be done to make computing environments more secure.

 Chief information officers (CIOs) have a responsibility to oversee all aspects of

software development, and should consider assigning a project manager familiar with the

security challenges inherent with a particular programming language. A CIO should also

sign-off at every stage, starting with system conceptualization, system requirements of the

system, analysis of benefits, and scope of project. The business and system analyses are

critical and must include security parameters for programmers in software requirement

specifications. Once the planning and design stages are approved, unit development,

software and system integration, followed by testing and retesting, are essential. All of this

precedes installation, site testing and acceptance, training/documentation, implementation

and maintenance.

Keywords: Software, Computer Programming, Applications, Security, System Analysis,

CIO

LV13090

 Security vulnerabilities of the top ten programming languages

INTRODUCTION

The National Vulnerability Database is a comprehensive website that allows risk managers

and security professionals to track security problems, and rate the level of risk. There are

56,009 Common Vulnerabilities and Exposures (CVE) listed, and 2,708 US-CERT

vulnerability notes, along with 245 US-CERT alerts (DHS National Cyber Security

Division/US-CERT, 2013). Only a fraction of known problems are listed in CVE.

 According to Robert Seacord, 100,000 software vulnerabilities are identified in a

given year, and 400,000 incidents occur during that same timeframe (Seacord, 2009).

Seacord leads the secure coding initiative at the Software Engineering Institute. It is very

difficult to keep up with so many threats, but there are some common themes that emerge

again and again. Most problems are related to buffer overflows, un-validated input, race

conditions, access-control problems, authentication or authorization weaknesses, or

cryptographic practices (Mac Developer Library, 2013). This paper will analyze common

errors that can be corrected with proper development processes.

 Over the past twenty-five years, some languages have been consistently popular

among programmers, such as C, C++, Visual Basic, Perl, Lisp and Ada. According to the

TIOBE Programming Community Index (TIOBE) (2013), other languages have grown in

usage very rapidly, such as PHP and Ruby. Objective-C was ranked 45th most used in 2008,

and it is now third. Java first appeared in the fourth position in 1998 and was number one by

2008.

THE TOP TEN LANGUAGES

Number One: Java

Java remains most used in 2013; its praxis grew by 1.34 percent from the previous year, and

18.39 percent of lines of code are developed using Java (TIOBE Software, 2013). Naturally,

the most popular language is subject to more scrutiny than others. Fred Long asserts that

Java is secure if used properly, but engineers can misuse it or improperly implement it. Java

is a multi-threaded programming language built on the type-safe model, which does not

permit a buffer’s boundary to be superseded. Hoglund and McGraw (2004) assert that buffer

overflows – in the classic sense – do not happen in Java because “falling off the end of an

object and spilling elsewhere is not possible.” However, external code that interacts with

Java – such as code written in C – is an exception (Hoglund & McGraw, 2004).

 Attackers understand that internal buffer overflow attacks are not easy, but have

demonstrated that a type confusion attack could exploit a weakness by using a public field

like a private field – as early as Java 5. This made Java’s Security Manager accessible to

manipulation or foul play (Long, 2005). This is also known as a language-based attack.

 CERT has warned of log injection attacks in Java – often through web browsers.

These attacks can be averted through validation, or authentication of submitted input. For

example, attackers have manipulated Java by entering a Carriage Return and Line Feed

(CRLF) sequence, which often deceives system administrators. Sanitizing the data assures

that it matches the requirements of each field and keeps administrators alert to un-validated

input (Mohrindra & Jumde, 2012). Unchecked input can include Structured Query

Language (SQL) injection in Java (Livshits & Lam, 2013).

 Because Java is a multi-threaded programming language, it does enable deadlock

LV13090

 Security vulnerabilities of the top ten programming languages

and race conditions (Java Revisited, 2012). Deadlock occurs when two or more threads are

waiting for each other, which can permanently obstruct progress (Java Tutorials, 2013). This

is a bug, but not as much of a liability as are race conditions, which occur when

synchronization has not been properly programmed. For example, check and act should start

with a check thread and finish with an act thread. It is not uncommon that a null value is

recorded when there is a delay that was not anticipated by the programmer (Java Revisited,

2012). Two or more threads can share physical memory as directed by Java. If the result of a

thread is recorded before another thread, out of sequence, an attacker can manipulate the

system in a way not anticipated by programmers (IBM Developer Works, 2004). One

method is for a malicious user to claim to be a trusted user, and the system can be tricked

into authentication. As a result, information submitted to logs could be accepted without

being validated (OWASP, 2009).

 Trust exploits follow access-control vulnerabilities. Code-signing errors occur when

there is no valid certificate that matches a user profile (Web Builders, 2013). Developer

Richard Dallaway experienced many problems that were only resolved by obtaining digital

certificates: “I needed to hand over money to a certificate authority so they could run some

background checks on me to prove that I am who I say I am” (Dallaway, 2013).

Essentially,

it is possible to get a certificate from authorities that are less stringent, leaving Oracle Java 7

wide open for exploitation on Windows, OS X, and Linux platforms. CERT found that “a

remote attacker may be able to execute arbitrary code on a vulnerable system”

(CERT/Software Engineering Institute/Carnegie Mellon, 2013).

 Java patches have been frequently introduced to fix bugs after exploits expose

vulnerabilities. H.D. Moore, CSO of Rapid7, indicated that Update 11 for Java 7 was not

sufficient, and users should not keep Java on their desktop, nor rely on it to surf the web. He

suggests that it will probably take two years to correct these vulnerabilities (Smith, 2013).

Despite these challenges, Java is used on the Android platform, so it is likely to have staying

power (Taft, 2012).

Number Two: C

Java and C are the only two programming languages in which more than 10 percent of code

is used to write new software. In February 2013, TIOBE found that the usage of C grew by

only 0.56 percent from the year before, and 17.080 percent of code is written in C (TIOBE

Software, 2013). Vulnerabilities with the C programming language have been known for

some time, so they are less shocking than recent warnings about Java. C is very influential,

so you will see references back to C in other languages, such as Perl (number nine) and

Ruby (number ten). The relationship with C++, C#, and Objective-C are more obvious. C’s

vulnerabilities have rippled throughout software programming for decades.

 C traces back to Bell Labs in the early 1970s before multithreading was feasible on

hardware. It’s a procedural language that has evolved over the decades as hardware has

become more sophisticated (University of Michigan, 2013). This evolution has triggered

race conditions, which has caused significant functionality problems and enabled some

exploits.

 Java is object-oriented, while C is function-oriented. C’s basic programming unit is a

function (Princeton University, 2013). C is vulnerable to code injection attacks. It allocates

memory with local variables in a function (automatic), global variables (static) and malloc

LV13090

 Security vulnerabilities of the top ten programming languages

(dynamic). Some programmers do not know that they are responsible for allocating and de-

allocating memory, including bounds and type checks. Compilers – which transform code

into an executable program – do not detect common errors in C at run-time. Errors include

pointers to de-allocated memory, reserving memory indefinitely after it is needed, and

writing past bounds of allocated memory (Younan, 2013).

 C is much more vulnerable to buffer overflows than Java is. According to James

Joyce, “C includes no way of telling when the end of an array or allocated block of memory

is overrun. The only way of telling is to run, test, and wait for a segfault. A spectacular crash

is also a telltale sign. Or a slow, steady leakage of memory from a program is a symptom of

a buffer overflow in C” (2012). He suggests that C’s greatest weakness is that it does not

keep track of the ends of strings (Joyce, 2012). Null-termination errors, string truncation,

and unbounded string copies create vulnerabilities (Seacord, 2005). Unlike Java, C lacks

type safety. C has become more prone to errors in recent years because data across the web

is exchanged between programs using strings

(Seacord, 2005).

 An array is a string with a series of characters. Programmers are limited with arrays in

C, and have to go to great lengths to correct this limitation. A hacker familiar with this

limitation can use a web field to launch an attack. They intentionally exceed the fixed-length

static array and can actually manipulate string operations to write outside the bounds of the

statically allocated character array, which might be 80 characters. Therefore, un-validated

input is a particular concern with strings in C. Programmers must take an extra step to test

the length of the input and can then dynamically allocate memory (Seacord, 2005). This

erects a barrier to an exploit based on a commonly known error in C. Programmers have

access to libraries that enable them to validate characters submitted in C. For example, a zip

code could be restricted to five numeric characters. Alphabetical characters could be

rejected in a zip code or other numeric field, such as a phone number (C Programming,

2013).

 Robert Seacord asserts that C “is intended to be a lightweight language with a small

footprint” (2005). He added “this characteristic of C leads to vulnerabilities when

programmers fail to implement the required logic, because they assume it is handled by C

when it is not. This problem is magnified when programmers are already familiar with

superficially similar languages such as Java, Pascal, or Ada, leading them to believe that C

protects the programmer better than it actually does. These false assumptions have led to

programmers failing to prevent writing beyond the boundaries of an array, failing to catch

integer overflows and truncations, and calling functions with the wrong number of

arguments” (Seacord, 2005).

Number Three: Objective-C

C is a procedural function-oriented language, while Objective-C is object-oriented. In some

ways it is not a different language than C, but a series of extensions based on an early

object-oriented language called Smalltalk (iOS Developer Library, 2010). TIOBE research

found that usage of Objective-C grew more than any of the other top ten languages – by

2.74 percent from the year before. Currently 9.803 percent of programmers use Objective-C

(TIOBE Software, 2013). To a large degree, this is because Apple’s operating systems and

application programming interfaces use Objective-C (Apple Developer, 2012). This has

allowed developers of apps to tap into the vastly growing market of iPhone and iPad users.

LV13090

 Security vulnerabilities of the top ten programming languages

 Objective-C does address potential access-control problems through the use of objects

that encapsulate data. Based on this approach, the optimal method is to show only a public

interface that hides the internal operations. Therefore, a hacker has a far more difficult time

gaining unauthorized access (iOS Developer Library, 2012).

 Many hackers understand the limits of Objective-C, and enter malformed data to see

what will happen (Secure Coding Guide, 2011). Un-validated input is a concern in

Objective-C, which can enable code insertion vulnerabilities, format string vulnerabilities,

and buffer overflows. Because of the addition of objects, developers have an advantage in

reducing the risk of buffer overflows with Objective-C. NSString is an example of a Cocoa

object that can manipulate strings (Programming4Us, 2011). Cocoa is a collection of APIs

and runtime objects for Objective-C. According to mobile security expert Jeremy Allen,

“All object allocations go on the heap, which helps prevent stack overflows since memory

controlled by the coder does not live on the stack” (Allen, 2010).

 Objective-C is a multi-threaded programming language that creates race conditions.

These race conditions can be exploited. “Time of check-time of use” exposes a momentary

gap. This is between the time a file or string is located and the time it is accessed. The

attacker can then place a bad file in its place, and the software can write to it (Mac

Developer Library, 2012).

 Attackers can also exploit signal handing vulnerabilities. Objective-C’s signal

handlers can execute code at random intervals. Even though one action may be expected to

occur at a moment in time, if the signal handler sets a string in motion, it can create a race

condition. Objective-C programmers should take extra effort not to use signal handlers (Mac

Developer Library, 2012).

Number Four: C++

Objective-C and C++ are both based on C and are object-oriented, but both have very

different syntax. Because of the complexity and precision of the syntax, Linus Torvalds said

that C++ is a “horrible language” (Harmful Stuff, 2007). Indian Institute of Science assistant

professor Gaurav Tomar explains that “C++ [was] designed for general object oriented-

programming in the days when the typical computer was a standalone machine running a

command line-based user interface” (2008).

 TIOBE found that C++ usage grew by only 0.91 percent from the year before, and

8.758 percent of programmers used it in February 2013 (TIOBE Software, 2013). C++ is a

mid-level language and not as relevant to the mobile environment. Perhaps it is also less

popular because it lacks runtime bindings, proxies, categories, and Interface Builder

(Rutman, 2013).

 Kragen Javier Sitaker is an Argentinian developer (Canonical, 2013). Sitaker

compared the two languages and concluded they both “have a string class and containers in

the standard library, and support for some automatic memory management in the language.

This turns out to make a big difference in practice in reducing [those] vulnerabilities” (Y

Combinator, 2013).

 The C++ object library addresses buffer overflows. String library std::string

combined with stream operators (>> and <<) reduces the likelihood of overflows. However,

these can be compromised when a program uses C API functions instead of C++

(eTutorials, 2013).

LV13090

 Security vulnerabilities of the top ten programming languages

 Among other issues, shared variables can cause race conditions in C++ with

conditions such as simple increments of variables, loop indices, and shared class objects.

Sun Development Network author Phyllis Gustafson advises developers to pay particular

attention to even the most innocuous variables with critical regions or atomic directives.

Any modifications to variables should be carefully considered in advance, because pitfalls

in C++ are unpredictable (2013).

 C++ enforces access-control restrictions within thread safety attributes, which is not

customary. These attributes are attached to methods or fields. These methods have many

intricacies that are used a compile, and only the most experienced programmers are likely to

understand how to make certain compromises to get around the limitations of the C++

model without creating significant vulnerabilities (Blaikie, 2012).

 Matasano Security’s founder observed, “C programs are susceptible to memory

corruption. Programs written in practically every mainstream high level language are not

susceptible to those problems (until they start using third-party C extensions). That’s the

security win of not using C code.” Thomas H. Ptacek suggested, “One way to get C/C++

code fit into a web application is via ‘nosql’ databases, particularly Redis; let something like

Ruby/Rack or Python/WSGI or Java Servlets soak up the hostile HTTP traffic, and use it to

drive an async API over Redis. The Redis interface is also so simple that it’s very easy to

hook C code up to it, and Redis is somewhat ‘typed,’ which reduces the amount of parsing

you have to do” (Y Combinator, 2013). Needless to say, C++ is filled with landmines that

many programmers cannot see.

Number Five: C#

The fundamental operators and style of C++ are leveraged in C# (called “C Sharp”), but also

add concepts of Visual Basic (see Number Eight). C# executes the code in a controlled

sandbox called the virtual machine, which compels software to be type safe. Objective-C,

C++, and C# are all object-oriented. All code in C# must be enclosed within an object

(Wikibooks, 2013).

 According to TIOBE, C# is ranked 5th and is used for development on Microsoft

.NET. It is considered by some to be appropriate for Internet programming, but it is not

exactly a key enabler of today’s mobile apps (Godel, 2001). It’s usage shrank by a

whopping -1.97 percent from the year before, decreasing more than any of the other top ten

languages. Approximately 6.680 percent of code uses C# (TIOBE Software, 2013).

 C# is viewed by some as a significant improvement on C++, especially in the areas of

versioning, events, and garbage collection. C# programmer Hafeez Mohammed explained

that the “framework allows you to forget about memory management. It’s incredibly

scalable, and even brings an end to the infamous 'DLL Hell' by getting rid of globally

unique identifiers (GUIDs), registration, and all that automatically.” C# says goodbye to

buffer overflows and significantly improves the state of race conditions (Mohammed, 2013).

Yet, the runtime system’s garbage collector in C# is not foolproof. However, in conjunction

with destructors (dtors) and finalizers, it is sufficiently reliable to assume that programmers

don’t need to stress about freeing of memory resources (Mehra, 2009).

 In the .NET framework, C# allows applications to be scanned for vulnerabilities

(Mehra, 2009). This tool is good as a final check before an application goes live or ships,

but developers need to deal with C# vulnerabilities as they work. SQL injection, packet-

LV13090

 Security vulnerabilities of the top ten programming languages

sniffing, session hacking and cross-site scripting (XXS) problems are known weaknesses.

All SQL commands should be replaced with parameterized queries or stored procedures to

avoid SQL injection. Secure https should always be used to avert session hijacking and

packet-sniffing. HTTP-only is the secure standard when setting cookies, in order to avoid

cross-site scripting predicaments (Ideal Programmer, 2009). These are best practices, but it

is essential that a programmer stay abreast of vulnerabilities as soon as they are made

public.

 When C#.NET vulnerabilities can be corrected, Microsoft releases patches on the first

Tuesday of each month. This is called “Patch Tuesday.” The following day is known as

“Exploit Wednesday” (Peterson, 2009). David Aucsmith made a startling statement about

patch releases: “We have never had vulnerabilities exploited before the patch was known.”

Aucsmith is Senior Director at the Microsoft Institute for Advanced Technology in

Governments (Bradley, 2013). In essence, the release of patches is a clue to hackers as to

where they can take advantage of vulnerabilities that have not been patched. C# is

somewhat stable, and major new flaws are not frequently discovered, which is not true of

PHP.

Number Six: PHP

.NET and PHP are the two leading development frameworks for dynamic web sites.

Dynamic sites provide user experiences that vary from person to person, depending upon the

choices of the user, or cookies that the person’s browser contains. PHP is the foundation for

popular web development applications such as Drupal, Joomla, and Wordpress. TIOBE

concluded that PHP is the sixth language in terms of usage. It’s popularity decreased by a

modest -0.57 percent from the year before, and 5.074 percent of programmers used PHP as

of February 2013 (TIOBE Software, 2013). A low level of security may be one reason for

the decline.

 Interestingly, the first version was a collection of Perl (see Number Nine) scripts in

1995, called Personal Home Page (PHP) tools. Hence the name PHP was born, but what it

represented changed dramatically. In 1997, the next version was rewritten in C and was

called PHP Form Interpreter. The third version emerged with APIs, databases and protocols

and was called PHP Hypertext Preprocessor. This name has stuck, but the structure changed

again in 2000. Version 4 was based on an open-source scripting engine called Zend Engine

(Grubb, 2012).

 Object-oriented PHP seemed like a real breakthrough in terms of ease of use for

programmers, but in 2006 a major vulnerability was discovered with Zend Engine

hashtables (Esser, 2013). Arrays in PHP are ordered hashtables (Swanson, 2013). Not

surprisingly, hash indices in PHP are both alphabetical and numerical. The function

zend_hash_del_key_or_index contained a flaw that inadvertently deleted a bucket-slot

belonging to numerical keys, even though instructions may have called for the alphabetical

bucket to be deleted. As a result, the wrong variables are deleted in PHP’s symboltable, and

the incorrect elements are removed from arrays (Esser, 2013). This vulnerability was fixed

with a patch of PHP4 six months after it was discovered, but it was the first of many major

problems. Over time, it has become apparent that PHP is terribly flawed. Approximately

one-third of all the problems listed in the National Vulnerability Database are associated

with PHP (DHS National Cyber Security Division/US-CERT, 2013).

LV13090

 Security vulnerabilities of the top ten programming languages

 The most recent patch of PHP that was released in 2013 is 5.4.12 (PHP Group, 2013).

It includes fixes for Core, Date, FPM, Litespeed, sqllite3, PDO_OCI and PDO_sqllite (PHP

Group, 2013). PHP does not have Patch Tuesday; it actually publishes a list of 372

categories of bugs and vulnerabilities, with a total 64,156 items. Anyone – including hackers

– can go to this site and see 2080 bugs or vulnerabilities that just can’t be fixed (PHP Group,

2013). Some are false reports, while others are minor and leave little for room for hackers to

exploit. Some bugs are legacy problems that PHP Group no longer supports. However, as

innocuous as some bugs might appear, bad actors could find ways to exploit a limitation.

For example, “Mod doesn't return correct values” is a posting about a problem with the

calculation of large numbers. Derick Rethans of PHP Group responded that “PHP only

supports signed integers (range is -2147483648 to 2147483647 on Linux), so this is actually

the expected behavior” (PHP Group, 2013). Therefore, attackers might be able to exploit

this limitation by creating a calculation that would result in a number greater than

2,147,483,647. In large transactions, this might be a disaster.

 “Beware: Some MySQL table types (storage engines) do not support transactions.”

This is a warning that appears in the PHP online manual. The manual continues: “When

writing transactional database code using a table type that does not support transactions,

MySQL will pretend that a transaction was initiated successfully. In addition, any data

definition language (DDL) queries issued will implicitly commit any pending transactions”

(PHP Group, 2013). That is almost unbelievable.

 PHP is a scripting language, while MySQL is a relational database management

system that both use the same server nearly 99 percent of the time (Yahoo Answers, 2012).

They are connected with PHP Data Objects (PDO) (PHP Group, 2013). There are five

dynamic MySQL options or variables that present security problems:

automatic_sp_privileges (system variable), local_infile (system variable), old_passwords

(system variable), safe-show-database (option file and system variable) and secure-auth

(option file and system variable) (MySQL, 2013). Server access is a huge issue that must be

carefully controlled and monitored with PHP and MySQL.

 There are several steps that can be taken to address PHP/MySQL vulnerabilities.

Installation of patches as soon as they are released is essential. SQL injections are enabled

by bugs in PHP code, and injections can be averted by disabling the use of LOCAL INFILE.

Remote access should be restricted, or better yet, disabled. The command bind-address=(IP

address) will cause the server to only respond to localhost. Accounts must be frequently

reviewed. Obsolete and anonymous accounts should be deleted, while system and database

privileges should be limited. Simple things, like changing the root username to another

name, can make it much more difficult to for attackers to assume the root identity. The root

directory can also be changed, so that hackers cannot run UNIX commands to manipulate

the directory system. PHP does not automatically run logs of activity on the database.

Logging needs to be enabled so that intrusions and errors can be tracked (Green SQL,

2013). Administrators must check these logs frequently in PHP because it is so deeply

flawed in this regard.

Number Seven: Python

In contrast to PHP, the Python Security Response Team only shares vulnerabilities with

what it describes as a “highly trusted cabal of Python developers” (Python, 2013). They

LV13090

 Security vulnerabilities of the top ten programming languages

actually attempt to avoid the mistakes that lead to Exploit Wednesday.

 The Django framework is based on Python, but it is not strictly a language used for

web development. Many games are built with it (Fuecks, 2013). Python is a high level

language that uses natural language elements, intended to be easy to learn, perhaps easier

than PHP (Python, 2013). Y Combinator co-founder Paul Graham observed, “People don’t

learn Python because it will get them a job; they learn it because they genuinely like to

program and aren’t satisfied with the languages they already know.” He asserted that the

source code is more attractive and less complicated (Graham, 2004). This may account for

its relatively robust growth. TIOBE found that Python grew significantly by 1.8 percent

from the previous year, and 4.949 percent of programmers used Python as of February 2013

(TIOBE Software, 2013).

 Python has different versions, such as CPython and IronPython. The Python

Interpreter in CPython is based on C and can lead to buffer overflows. Other versions, such

as IronPython and Jython, are based on Java and C# and have an added layer of protection

(Velocity Reviews, 2013).

 Concurrency is parallel processing. Message passing and shared data are two

standard models of concurrency, an approach that attempts to address race conditions with

most routine Python programs (Nagle, 2013). Message passing relies on a queue to break a

job into smaller segments that are organized by simple objects. More complex jobs contain a

poison pill that can halt the processes and avoid race conditions (Hellman, 2013). Python

programmer John Nagle noted, “Shared data is permitted, using AtomicObject or

SynchronizedObject objects. So, if there’s a big data structure being updated by multiple

threads, it can be shared between threads. Within an AtomicObject or SynchronizedObject

object, race conditions are automatically prevented by the automatic locking” (Nagle, 2013).

However, the National Vulnerabilty Database has found that Python 2.6 through 3.2 does

create race conditions that allow users to obtain credentials after they access ~/.pypirc under

certain circumstances (DHS, 2013). This is also an access-control vulnerability. Yet, Python

seems to have fewer vulnerabilities than some of the other languages.

Number Eight: Visual Basic

Programmer David Rutten claims that Visual Basic (VB) is “much friendlier than Python.”

He doesn’t like Python because it is both case sensitive and indentation sensitive (Rutten,

2013). In February 2013, TIOBE ranked VB at number eight. Its usage grew by a meager

0.33 percent from the previous year, and 4.648 percent of new programs on Microsoft

platforms have VB code (TIOBE Software, 2013). It is more than a language, but rather a

system that creates new possibilities for developers who work with the Windows operating

system. It enables developers to actually visualize the interface (Mabutt, 2013).

 VB is not without buffer overflows. For example, Microsoft Animation ActiveX

control in 6.0 allows remote hackers to run arbitrary code with an audiovisual interleave

(AVI) file. This causes memory corruption and an ‘allocation error.’ (CVE Details, 2013).

Enterprise Edition 6.0 is also vulnerable when a long CommandName line or

ConnectionName line is abused in a Micrografx Designer Graphic (.dsr) file (CVE Details,

2013). There are more examples, but space is limited.

 Race conditions are also a known vulnerability in VB. Microsoft recommends the

locking of shared variables. If properly written, a sequence allows one thread to access to

LV13090

 Security vulnerabilities of the top ten programming languages

the shared variable at a time (Microsoft Support, 2013). Access-control is another common

problem that also plagues VB. Therefore, security policies and appropriate access

permission levels are essential ways to control access and manage risk (Microsoft Support,

2013).

 VB 11.0 was rolled out in 2012 on the .NET framework. Objects have continued to be

a vital component of VB throughout its evolution, yet syntax has changed dramatically since

the release of VB 6.0. It is no longer backward compatible. One of the biggest changes was

a radical new edit-and-continue function at the source code level. As a result, security

vulnerabilities are much more difficult to fix. For example, Microsoft acknowledges that

“you must change the target platform and compile the application as a 32-bit application” if

a coder is debugging a 64-bit application and wishes to use Edit and Continue (MSDN,

2013). Several efforts to improve security have been criticized by programmers because it

creates much more work and slows processes, such as start-up time. Common Language

Runtime virtual machine from Microsoft is designed to run secure managed code, while

operating with unmanaged code. From a security standpoint, this is good because there are

error-handling mechanisms (Keserovic et al., 2013). In the end, many of these processes

introduced by Microsoft force the programmer to do the right thing, and that is time

consuming. More programming languages and support communities could learn from

Microsoft, at least in this regard.

Number Nine: Perl

VB only runs on Windows, while Perl runs on multiple operating systems. Both are object-

oriented (Perlmonks, 2013). Usage of Perl declined slightly by -0.68 percent from the

previous year; TIOBE found that 2.252 percent of programmers use Perl as of February

2013 (TIOBE Software, 2013). It has a reputation among some coders as archaic and

arcane. Paul Venezia observed that, “Perl has been an instrumental part of the innovation

and technological advancements of the last two decades, and it’s served as a catalyst for a

significant number of other languages that have contributed heavily to the programming

world in general” (Slashdot, 2013). That being said, Perl is not exactly a dinosaur. Its code

is the basis for web development applications such as Movable Type, Ticketmaster and

LiveJournal. It is also the basis for web application development frameworks, including

Catalyst and Titanium (Home of Szabgab, 2013).

 It began as a UNIX scripting language, and Perl does draw more than inspiration

from C. Shell scripting; data extraction utility AWK and stream editor (sed) parser are all

borrowed directly from C. Parsing is a big part of what made Perl a big deal in the 1990s,

and enabled common gateway interfaces (CGIs) to serve dynamic content as the dot.com

boom was unfolding (W3C, 2013). The power of Perl’s CGI capacity is also a security

weakness. Clients can gain unauthorized access. As a result, there are many examples of

havoc. The simplest way to limit the risk is to cut off the access of certain functions. For

example, server-side includes should be turned-off. Access via UNIX – especially in the

Bourne shell – should be restricted. In particular, special characters can be used by an

attacker in Bourne and can confuse the script, thus gaining access without authorization

(Apache Admin, 2013).

 Perl has a number of features that are designed to prevent attacks. For example, it has

a sophisticated mechanism to avert algorithmic complexity attacks. These attacks often lead

LV13090

 Security vulnerabilities of the top ten programming languages

to denial of service (Crosby & Wallach, 2013). Developers of Perl have ingeniously created

a hashing function to recalculate keys to change the order of the elements of the message.

However, as clever as this fortification is, Yves Orton found that there is a vulnerability that

is exploitable (Best Practical, 2013). To be successful, attackers induce an execution time

that is “worst-case” (Crosby & Wallach, 2013). In normal usage, the worst case is nearly

impossible, but the vulnerability is that it creates a condition in which hash tables

experience collisions. This can happen when there are two identical values, either the 32-bit

hash value or when the result of a division (modulus) operation becomes identical (Crosby

& Wallach, 2013).

 Perl was not developed as an object-oriented language. Many programmers wish to

use objects because they allow programs to locate, access, modify and secure data. Based on

this, semantics, syntax, special variables, modules and packages have been added by some

to make Perl object-oriented (Conway, 1999). It can be argued that this added complexity

additional security vulnerabilities.

Number Ten: Ruby

Perl and Ruby are diametrically opposed on many levels, with the exception of their

syntaxes (C2, n.d.). Both borrow a great deal from C (Cunningham & Cunningham, 2013).

Perl offers many ways to accomplish the same thing. Ruby was written as an object-oriented

language from the beginning and is much more rigid. This rigidity could also be viewed as

more consistent, simple, and even elegant, so that fewer things that can go wrong (Morin,

2013). TIOBE found that Ruby’s usage grew by 0.19 percent from the previous year, and

1.75 percent of programmers use Ruby as of 2013. Ruby displaced JavaScript as the tenth

most popular language (TIOBE Software, 2013).

 Media and conference entrepreneur Tim O’Reilly is keen on the open source

framework: “Ruby on Rails is a breakthrough in lowering the barriers of entry to

programming. Powerful web applications that formerly might have taken weeks or

months�to develop can be produced in a matter of days” (Ruby on Rails, 2013). Ruby may

be number ten, but is popular enough to have been used to build web applications for

Groupon, Lumosity, and the White Pages (Ruby on Rails, 2013).

 Such sites use eXtensible Markup Language (XML). XML is a very popular format to

share structured data over networks and the web. An XML parser allows the receiving

computer to read the incoming structured data. Needless to say, having to disable the parser

because of a security flaw would be an interruption to eCommerce. An access control flaw

was first noted in passing by a developer in a web forum in 2007. Ramifications of the flaw

in the XML parser were explained this year by Aaron Patterson, which finally prompted a

patch by 37Signals, the firm behind Rails. Patterson explained that Ruby on Rails allows an

attacker to “bypass authentication systems, inject arbitrary SQL, inject and execute arbitrary

code, or perform a DoS attack on a Rails application.” During the six years after the flaw

was found, Ruby on Rails was vulnerable to significant mischief (Lee, 2013).

 Ruby developers can manage security vulnerabilities, but their supervisors should

support the additional time needed to test for insufficient transport layer protection,

injection, cross-site scripting, broken authentication (and session management), insecure

cryptographic storage, insecure direct object references, security misconfiguration, cross-site

request forgery, failure to restrict URL access, and un-validated redirects and forwards.

LV13090

 Security vulnerabilities of the top ten programming languages

Ruby was created with the intention of reducing security vulnerabilities, but its C-like

syntax does not help that cause. Ruby has a filter that offers a workaround to prevent SQL

injections. However, Ruby programmers need to be aware that they must use Model.find(id)

or Model.find_by_some thing(something). This avoids line breaks and written symbols

(VeraCode, 2013).

 There are security review platforms for many languages and applications, including

Ruby. Veracode claims to provide governance, operating controls, eLearning, and

application intelligence, in addition to its scanning capabilities (VeraCode, 2013). However,

it is not enough to run tests after an application is “complete.” It is essential for

programmers to be aware of how to minimize vulnerabilities as they build software. They

must also stay informed on a daily basis of flaws that become known. They must also

download patches as soon as they become available and avoid posting vulnerabilities in

online forums.

CONCLUSION

Deloitte conducted a survey and found that 87 percent of CIOs were most concerned about

software development quality as the top threat in the pantheon of risks they face (Deloitte,

2007). One should not just point their finger at programmers. In many cases, flawed

specifications and designs are the root cause. In other cases, there is more complexity than

the budget or team can handle. Complexity is closely associated with insecurity because it

creates more variables that can be exploited because of unintended or unexpected

interactions. However, it is very common to see a lack of understanding in secure coding

practices among programmers.

 The Software Development Process Lifecycle requires the close supervision of a

project manager who understands the critical nature of security. A CIO should also sign-off

at each stage, starting with system conceptualization, system requirements of the system,

analysis of benefits, and scope of project. The business and system analyses are critical and

must include security parameters for programmers in software requirement specifications.

System, architectural and detail design then provide additional opportunities for

management to maintain quality controls for developers. Once the planning and design

stages are approved, unit development, software and system integration, followed by testing

and retesting, are critical. Clients are often most aware of the software during installation,

site testing and acceptance, training/documentation, implementation and maintenance.

However, that is too late for countermeasures for the vulnerabilities to be effective (Center

for Technology in Government, University at Albany/SUNY, 1998).

LV13090

 Security vulnerabilities of the top ten programming languages

REFERENCES

Allen, J. (2010). “Top 5 iPhone application development security issues.” Intrepiduc Group

Mobile Security. Retrieved from http://intrepidusgroup.com/insight/2010/05/top-5-

iphone-application-development-security-issues/.

Apache Admin. (2013). “Writing secure CGI scripts.” Retrieved from

http://www.apacheadmin.com/CGI/security.html.

Apple Developer. (2012). “OS X: Cocoa.” Retrieved from

https://developer.apple.com/technologies/mac/cocoa.html.

Best Practical. (2013). “Security vulnerability in Perl.” Retrieved from

http://blog.bestpractical.com/2013/03/security-vulnerability-in-perl.html.

Blaikie, D. (2012). “Discussion: Should we enforce access control in C++ attributes?”

University of Illinois at Urbana-Champaign. Retrieved from

http://lists.cs.uiuc.edu/pipermail/cfe-dev/2012-October/025474.html.

Bradley, T. (2013). “Hackers use patches To develop exploits.” About.com

Internet/Network Security. Retrieved from

http://netsecurity.about.com/cs/generalsecurity/a/aa022904.htm.

C2. (n.d.). “Ruby vs. Perl.” Retrieved from http://c2.com/cgi/wiki?RubyVsPerl.

Canonical. (2013). “Resume, Kragen Sitaker.” Retrieved from

http://canonical.org/~kragen/resume.html.

Center for Technology in Government, University at Albany/SUNY. (1998). “A survey of

system development process models.” Retrieved from

http://www.ctg.albany.edu/publications/reports/survey_of_sysdev/survey_of_sysdev.

pdf.

CERT/Software Engineering Institute/Carnegie Mellon. (2013). “Vulnerability note

VU#625617.” Retrieved from http://www.kb.cert.org/vuls/id/625617.

Conway, D. (1999). “What is object-oriented Perl?” Monash University. Retrieved from

http://www.csse.monash.edu.au/~damian/papers/PDF/cyberdigest.pdf.

C Programming. (2013). “Character input validation.” Retrieved from

http://cboard.cprogramming.com/c-programming/139475-character-input-

validation.html.

Crosby, S. & Wallach, D. (2013). “Denial of service via algorithmic complexity attacks.”

Rice University Computer Science Department. Retrieved

fromhttp://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003/.

Cunningham & Cunningham. (2013). “Cee language.” Retrieved from

http://c2.com/cgi/wiki?CeeLanguage.

CVE Details. (2013). “Visual Basic: Security vulnerabilities.” Retrieved from

http://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-

322/Microsoft-Visual-Basic.html.

Dallaway, R. (2013). “Java web start and code signing.” Retrieved from

http://www.dallaway.com/acad/webstart/.

Deloitte. (2007). “Deloitte 2007 global security survey: The shifting security paradigm.”

Retrieved from

http://www.deloitte.com/dtt/cda/doc/content/dtt_gfsi_GlobalSecuritySurvey_200709

01(1).pdf.

DHS. (2013). “National cyber awareness system.” Retrieved from

LV13090

 Security vulnerabilities of the top ten programming languages

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-4944.

DHS National Cyber Security Division/US-CERT. (2013). “National vulnerability

database.” Retrieved from http://nvd.nist.gov/.

DHS National Cyber Security Division/US-CERT. (2013). “National vulnerability database

version 2.2.” Retrieved from http://nvd.nist.gov/

Esser, S. (2013). “Zend_Hash_Del_Key_Or_Index Vulnerability.” Retrieved from

http://www.hardened-

php.net/hphp/zend_hash_del_key_or_index_vulnerability.html.

eTutorials. (2013). “C/C++ secure programming.” Retrieved from

http://etutorials.org/Programming/secure+programming/Chapter+3.+Input+Validatio

n/3.3+Preventing+Buffer+Overflows/.

Fuecks, H. (2013). “The real difference between PHP and Python.” Retrieved from

http://www.sitepoint.com/the-real-difference-between-php-and-python/.

Godel, J. (2001). “A comparison of C/C++ and C#.” Developer Fusion. Retrieved from

http://www.developerfusion.com/article/1743/a-comparison-of-cc-and-c/2/.

Graham, P. (2004). “The Python paradox.” Retrieved from

http://www.paulgraham.com/pypar.html.

Green SQL. (2013). “MySQL security best practices (hardening MySQL tips).” Retrieved

from http://www.greensql.com/articles/mysql-security-best-practices.

Grubb, K. (2012). “What does PHP stand for?” Bright Hub. Retrieved from

http://www.brighthub.com/internet/web-development/articles/62713.aspx.

Gustafson, P. (2013). “Detecting and avoiding OpenMP race conditions in C++.” Sun

Developer Network. Retrieved from

http://dsc.sun.com/solaris/articles/cpp_race.html.

Harmful Stuff. (2007). “Linus torvalds on C++.” Retrieved from http://harmful.cat-

v.org/software/c++/linus.

Hellman, D. (2013). “Communications between processes.” Retrieved from

http://pymotw.com/2/multiprocessing/communication.html.

Hoglund, G. & McGraw, G. (2004). Exploiting software: How to break code. Addison

Wesley, Boston, 2004.

Home of Szabgab. (2013). “What is Perl used for?” Retrieved from

http://szabgab.com/what-is-perl-used-for.html.

IBM Developer Works. (2004). “Secure programmer: Prevent race conditions.” Retrieved

from http://www.ibm.com/developerworks/library/l-sprace/index.html.

Ideal Programmer. (2009). “ASP.NET web site security vulnerability cheat sheet.”

Retrieved from http://idealprogrammer.com/net-languages/asp/aspnet-web-site-

security-vulnerability-cheat-sheet/.

iOS Developer Library. (2010). “Introduction: Object-oriented programming with objective-

C.” Retrieved from

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/OOP_Obj

C/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005149-CH1-SW2.

iOS Developer Library. (2012). “Programming with Objective-C: Encapsulating Data.”

Retrieved from

http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/Programmi

ngWithObjectiveC/EncapsulatingData/EncapsulatingData.html.

Java Revisited. (2012). “What is race condition in multithreading – 2 examples in Java.”

LV13090

 Security vulnerabilities of the top ten programming languages

Retrieved from http://javarevisited.blogspot.com/2012/02/what-is-race-condition-

in.html.

Java Tutorials. (2013). “Deadlock.” Retrieved from

http://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html.

Joyce, J. (2012). “Why C is not my favorite programming language.” Retrieved from

http://www.kuro5hin.org/story/2004/2/7/144019/8872.

Keserovic, S., Mortenson, D., & Nathan, A. (2013). “An overview of managed/unmanaged

code interoperability.” Retrieved from http://msdn.microsoft.com/en-

us/library/ms973872.aspx.

Lee, M. (2013). “Ruby on Rails vulnerable to six year old flaw.” Retrieved from

http://www.zdnet.com/ruby-on-rails-vulnerable-to-six-year-old-flaw-7000009559/.

Livshits, V.B. & Lam, M.S. (2013). “Finding security vulnerabilities in Java applications

with static analysis.” Computer Science Department, Stanford University. Retrieved

from http://suif.stanford.edu/papers/usenixsec05.pdf.

Long, F. (2005). “Software vulnerabilities in Java.” Software Engineering Institute,

Carnegie Mellon University. Retrieved from

http://www.sei.cmu.edu/library/abstracts/reports/05tn044.cfm.

Mabbutt, D. (2013). “What is Visual Basic?” Retrieved from

http://visualbasic.about.com/od/applications/a/whatisvb.htm.

Mac Developer Library. (2012). “Race conditions and secure file operations.” Retrieved

from

https://developer.apple.com/library/mac/#documentation/security/conceptual/Secure

CodingGuide/Articles/RaceConditions.html.

Mac Developer Library. (2013). “Types of security vulnerabilities.” Retrieved from

https://developer.apple.com/library/mac/#documentation/security/Conceptual/Secure

CodingGuide/Articles/TypesSecVuln.html.

Mehra, P. (2009). “Garbage collection in C#.” Retrieved from http://www.c-

sharpcorner.com/uploadfile/puranindia/garbage-collection-in-C-Sharp/.

Microsoft Support. (2013). “Description of race conditions and deadlock.” Retrieved from

http://support.microsoft.com/kb/317723.

Microsoft Support. (2013). “Security policy.” Retrieved from http://msdn.microsoft.com/en-

us/library/tha13y5z(v=vs.80).aspx.

Mohammed, H. (2013). “C#.NET getting started.” Information & Technology Management.

Retrieved from http://www.itmusa.net/netcsharpdayone.asp.

Mohrindra, D. & Jumde, P. (2012). “IDS03-J. Do not log unsanitized user input.” CERT /

Software Engineering Institute/Carnegie Mellon. Retrieved from

https://www.securecoding.cert.org/confluence/display/java/IDS03-

J.+Do+not+log+unsanitized+user+input.

Morin, M. (2013). “How does Ruby compare to Perl?” About.com. Retrieved from

http://ruby.about.com/od/beginningruby/a/vsperl.htm.

MSDN. (2013). “Edit and continue (visual basic).” Retrieved from

http://msdn.microsoft.com/en-us/library/ba77s56w.aspx.

MySQL. (2013). “6.1.4. Security-related mysqld options and variables.” Retrieved from

http://dev.mysql.com/doc/refman/5.0/en/security-options.html.

Nagle, J. (2013). “Newthreading – Safer concurrency for Python.” Retrieved from

http://www.animats.com/papers/languages/newthreadingintro.html.

LV13090

 Security vulnerabilities of the top ten programming languages

OWASP. (2009). “Race conditions.” Retrieved from

https://www.owasp.org/index.php/Race_Conditions.

Perlmonks. (2013). “Perl vs. VB.” Retrieved from

http://www.perlmonks.org/?node_id=227771.

Peterson, D. (2009). “Patch Tuesday leads to exploit Wednesday.” Digital Bond. Retrieved

from http://www.digitalbond.com/blog/2009/10/15/patch-tuesday-leads-to-exploit-

friday/.

PHP Group. (2013). “Bugs.” Retrieved from https://bugs.php.net/stats.php.

PHP Group. (2013). “Bug #23791 Mod doesn’t return correct values.” Retrieved from

https://bugs.php.net/bug.php?id=23791.

PHP Group. (2013). “Introduction to PDO.” Retrieved from

http://www.php.net/manual/en/intro.pdo.php.

PHP Group. (2013). “MySQL functions (PDO_MYSQL).” Retrieved from

http://php.net/manual/en/ref.pdo-mysql.php

PHP Group. (2013). “PHP5 changelog.” Retrieved from http://www.php.net/ChangeLog-

5.php#5.4.12.

PHP Group. (2013). “Unsupported historical releases.” Retrieved from

http://php.net/releases/index.php.

Princeton University. (2013). “C programming vs. Java programming.” Retrieved from

http://introcs.cs.princeton.edu/java/faq/c2java.html.

Programming4Us. (2011). “Mobile application security testing.” Retrieved from

shttp://programming4.us/mobile/1676.aspx.

Python. (2013). “Python programming language – Official website.” Retrieved from

http://www.python.org/.

Python. (2013). “Security advisories.” Retrieved from

http://www.python.org/news/security/.

Ruby on Rails. (2013). “Ruby on Rails.” Retrieved from http://rubyonrails.org/.

Ruby on Rails. (2013). “Ruby on Rails applications.” Retrieved from

http://rubyonrails.org/applications.

Rutman, M. (2013). “C++ versus objective-C.” MacTech. Retrieved from

http://www.mactech.com/articles/mactech/Vol.13/13.03/CandObjectiveCCompared/i

ndex.html.

Rutten, D. (2013). “Visual Basic vs. Python.” Retrieved from

http://www.grasshopper3d.com/forum/topics/visual-basic-vs-

python?xg_source=activity.

Seacord, R. (2009). CERT. “CS 15392 secure programming.”

Seacord, R. (2005). “Secure coding in C and C++: C-style strings.” Retrieved from

http://www.sei.cmu.edu/library/abstracts/news-at-sei/feature120061.cfm.

Secure Coding Guide. (2011). “Validating input and interprocess communication.”

Retrieved

fromhttp://developer.apple.com/library/ios/#documentation/Security/Conceptual/Sec

ureCodingGuide/Articles/ValidatingInput.html#//apple_ref/doc/uid/TP40007246.

Slashdot. (2013). “Perl’s glory days are behind it, but it isn’t going anywhere.” Retrieved

from http://developers.slashdot.org/story/13/01/29/0235220/perls-glory-days-are-

behind-it-but-it-isnt-going-anywhere.

Smith. (2013). “Oracle releases emergency Java patch; Experts warn flaws may take 2 years

LV13090

 Security vulnerabilities of the top ten programming languages

to fix.” Network World. Retrieved from

http://www.networkworld.com/community/blog/oracle-releases-emergency-java-

patch-experts-warn-flaws-may-take-2-years-fix.

Swanson, E. (2013). “How PHP’s foreach works.” Hacker News. Retrieved

fromhttps://news.ycombinator.com/item?id=5295034.

Taft, D. (2012). “Java drops from top programming language spot, C rules.” eWeek.

Retrieved from http://www.eweek.com/c/a/Application-Development/Java-Drops-

From-Top-Programming-Language-Spot-C-Rules-626622/.

Tomar, G. (2008). “Difference between C++ and C#,” C# corner.” Retrieved from

http://www.c-sharpcorner.com/uploadfile/gtomar/difference-between-cpp-and-C-

Sharp/.

TIOBE Software. (2013). “TIOBE programming community index for February 2013.”

Retrieved from http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

University of Michigan. (2013). “The C programming language.” Retrieved from

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/c/c.html.

Using C# Net. “Check .NET code for security vulnerabilities.” Retrieved from

http://www.usingcsharp.net/2010/05/check-net-code-for-security-vulnerabilities/.

Velocity Reviews. (2013). “Re: Is python buffer overflow proof?” Retrieved from

http://www.velocityreviews.com/forums/t693508-re-is-python-buffer-overflow-

proof.html.

VeraCode. (2013). “Ruby on Rails secure development guidelines.” Retrieved from

http://www.veracode.com/security/ruby-security

W3C. (2013). “CGI: Common Gateway Interface.” Retrieved from

http://www.w3.org/CGI/.

Web Builders. (2013). “Code sign errors.” Retrieved from

http://webbuilders.wordpress.com/2009/12/25/code-sign-errors-profile-doesnt-

match-any-valid-certificateprivate-key-pair-in-the-default-keychain/.

Wikibooks. (2013). “C++ programming: C# comparison with C++.” Retrieved from

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C

omparisons/C_Sharp.

Yahoo Answers. (2012). “What is the relation between MySQL, PHP and Wordpress?,”

Retrieved from

http://answers.yahoo.com/question/index?qid=20100219142110AAytgyT.

Y Combinator. (2013). “Hacker news.” Retrieved from

https://news.ycombinator.com/item?id=3449388.

Younan, Y. (2013). “C and C++: Vulnerabilities, exploits and countermeasures.” Security

Research Group. Retrieved from

http://secappdev.org/handouts/2012/Yves%20Younan/C%20and%20C++%20vulner

abilities.pdf.

