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ABSTRACT 

Programming languages are like genetics, in that there are a few ancestors with common 

traits that have proliferated. These can be traced back over time. This paper will explore the 

common traits between the top ten programming languages, which runs almost 80 percent of 

all of software used today. These common traits are both good and bad. In programming, the 

bad traits equate to security vulnerabilities that are often exploited by hackers. Many 

programmers are not aware of these flaws and do not take the time to take corrective action 

as they build software applications. They cannot simply fix the problems at the end; they 

must continually adjust how they program throughout the process. This paper will also 

provide guidance on what can be done to make computing environments more secure. 

 Chief information officers (CIOs) have a responsibility to oversee all aspects of 

software development, and should consider assigning a project manager familiar with the 

security challenges inherent with a particular programming language. A CIO should also 

sign-off at every stage, starting with system conceptualization, system requirements of the 

system, analysis of benefits, and scope of project. The business and system analyses are 

critical and must include security parameters for programmers in software requirement 

specifications. Once the planning and design stages are approved, unit development, 

software and system integration, followed by testing and retesting, are essential. All of this 

precedes installation, site testing and acceptance, training/documentation, implementation 

and maintenance. 
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INTRODUCTION 

The National Vulnerability Database is a comprehensive website that allows risk managers 

and security professionals to track security problems, and rate the level of risk. There are 

56,009 Common Vulnerabilities and Exposures (CVE) listed, and 2,708 US-CERT 

vulnerability notes, along with 245 US-CERT alerts (DHS National Cyber Security 

Division/US-CERT, 2013). Only a fraction of known problems are listed in CVE.  

  According to Robert Seacord, 100,000 software vulnerabilities are identified in a 

given year, and 400,000 incidents occur during that same timeframe (Seacord, 2009). 

Seacord leads the secure coding initiative at the Software Engineering Institute. It is very 

difficult to keep up with so many threats, but there are some common themes that emerge 

again and again. Most problems are related to buffer overflows, un-validated input, race 

conditions, access-control problems, authentication or authorization weaknesses, or 

cryptographic practices (Mac Developer Library, 2013). This paper will analyze common 

errors that can be corrected with proper development processes. 

  Over the past twenty-five years, some languages have been consistently popular 

among programmers, such as C, C++, Visual Basic, Perl, Lisp and Ada. According to the 

TIOBE Programming Community Index (TIOBE) (2013), other languages have grown in 

usage very rapidly, such as PHP and Ruby. Objective-C was ranked 45th most used in 2008, 

and it is now third. Java first appeared in the fourth position in 1998 and was number one by 

2008. 

 

THE TOP TEN LANGUAGES  

Number One: Java 

Java remains most used in 2013; its praxis grew by 1.34 percent from the previous year, and 

18.39 percent of lines of code are developed using Java (TIOBE Software, 2013). Naturally, 

the most popular language is subject to more scrutiny than others. Fred Long asserts that 

Java is secure if used properly, but engineers can misuse it or improperly implement it. Java 

is a multi-threaded programming language built on the type-safe model, which does not 

permit a buffer’s boundary to be superseded. Hoglund and McGraw (2004) assert that buffer 

overflows – in the classic sense – do not happen in Java because “falling off the end of an 

object and spilling elsewhere is not possible.” However, external code that interacts with 

Java – such as code written in C – is an exception (Hoglund & McGraw, 2004).  

  Attackers understand that internal buffer overflow attacks are not easy, but have 

demonstrated that a type confusion attack could exploit a weakness by using a public field 

like a private field – as early as Java 5. This made Java’s Security Manager accessible to 

manipulation or foul play (Long, 2005). This is also known as a language-based attack.  

  CERT has warned of log injection attacks in Java – often through web browsers. 

These attacks can be averted through validation, or authentication of submitted input. For 

example, attackers have manipulated Java by entering a Carriage Return and Line Feed 

(CRLF) sequence, which often deceives system administrators. Sanitizing the data assures 

that it matches the requirements of each field and keeps administrators alert to un-validated 

input (Mohrindra & Jumde, 2012). Unchecked input can include Structured Query 

Language (SQL) injection in Java (Livshits & Lam, 2013). 

   Because Java is a multi-threaded programming language, it does enable deadlock 
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and race conditions (Java Revisited, 2012). Deadlock occurs when two or more threads are 

waiting for each other, which can permanently obstruct progress (Java Tutorials, 2013). This 

is a bug, but not as much of a liability as are race conditions, which occur when 

synchronization has not been properly programmed. For example, check and act should start 

with a check thread and finish with an act thread. It is not uncommon that a null value is 

recorded when there is a delay that was not anticipated by the programmer (Java Revisited, 

2012). Two or more threads can share physical memory as directed by Java. If the result of a 

thread is recorded before another thread, out of sequence, an attacker can manipulate the 

system in a way not anticipated by programmers (IBM Developer Works, 2004). One 

method is for a malicious user to claim to be a trusted user, and the system can be tricked 

into authentication. As a result, information submitted to logs could be accepted without 

being validated (OWASP, 2009). 

   Trust exploits follow access-control vulnerabilities. Code-signing errors occur when 

there is no valid certificate that matches a user profile (Web Builders, 2013). Developer 

Richard Dallaway experienced many problems that were only resolved by obtaining digital 

certificates: “I needed to hand over money to a certificate authority so they could run some 

background checks on me to prove that I am who I say I am” (Dallaway, 2013).
 
Essentially, 

it is possible to get a certificate from authorities that are less stringent, leaving Oracle Java 7 

wide open for exploitation on Windows, OS X, and Linux platforms. CERT found that “a 

remote attacker may be able to execute arbitrary code on a vulnerable system” 

(CERT/Software Engineering Institute/Carnegie Mellon, 2013). 

   Java patches have been frequently introduced to fix bugs after exploits expose 

vulnerabilities. H.D. Moore, CSO of Rapid7, indicated that Update 11 for Java 7 was not 

sufficient, and users should not keep Java on their desktop, nor rely on it to surf the web. He 

suggests that it will probably take two years to correct these vulnerabilities (Smith, 2013). 

Despite these challenges, Java is used on the Android platform, so it is likely to have staying 

power (Taft, 2012). 

 

Number Two: C 

Java and C are the only two programming languages in which more than 10 percent of code 

is used to write new software. In February 2013, TIOBE found that the usage of C grew by 

only 0.56 percent from the year before, and 17.080 percent of code is written in C (TIOBE 

Software, 2013). Vulnerabilities with the C programming language have been known for 

some time, so they are less shocking than recent warnings about Java. C is very influential, 

so you will see references back to C in other languages, such as Perl (number nine) and 

Ruby (number ten). The relationship with C++, C#, and Objective-C are more obvious. C’s 

vulnerabilities have rippled throughout software programming for decades. 

   C traces back to Bell Labs in the early 1970s before multithreading was feasible on 

hardware. It’s a procedural language that has evolved over the decades as hardware has 

become more sophisticated (University of Michigan, 2013). This evolution has triggered 

race conditions, which has caused significant functionality problems and enabled some 

exploits.  

   Java is object-oriented, while C is function-oriented. C’s basic programming unit is a 

function (Princeton University, 2013). C is vulnerable to code injection attacks. It allocates 

memory with local variables in a function (automatic), global variables (static) and malloc 
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(dynamic). Some programmers do not know that they are responsible for allocating and de-

allocating memory, including bounds and type checks. Compilers – which transform code 

into an executable program – do not detect common errors in C at run-time. Errors include 

pointers to de-allocated memory, reserving memory indefinitely after it is needed, and 

writing past bounds of allocated memory (Younan, 2013). 

   C is much more vulnerable to buffer overflows than Java is. According to James 

Joyce, “C includes no way of telling when the end of an array or allocated block of memory 

is overrun. The only way of telling is to run, test, and wait for a segfault. A spectacular crash 

is also a telltale sign. Or a slow, steady leakage of memory from a program is a symptom of 

a buffer overflow in C” (2012). He suggests that C’s greatest weakness is that it does not 

keep track of the ends of strings (Joyce, 2012). Null-termination errors, string truncation, 

and unbounded string copies create vulnerabilities (Seacord, 2005). Unlike Java, C lacks 

type safety. C has become more prone to errors in recent years because data across the web 

is exchanged between programs using strings
 
(Seacord, 2005). 

   An array is a string with a series of characters. Programmers are limited with arrays in 

C, and have to go to great lengths to correct this limitation. A hacker familiar with this 

limitation can use a web field to launch an attack. They intentionally exceed the fixed-length 

static array and can actually manipulate string operations to write outside the bounds of the 

statically allocated character array, which might be 80 characters. Therefore, un-validated 

input is a particular concern with strings in C. Programmers must take an extra step to test 

the length of the input and can then dynamically allocate memory (Seacord, 2005). This 

erects a barrier to an exploit based on a commonly known error in C. Programmers have 

access to libraries that enable them to validate characters submitted in C. For example, a zip 

code could be restricted to five numeric characters. Alphabetical characters could be 

rejected in a zip code or other numeric field, such as a phone number (C Programming, 

2013). 

   Robert Seacord asserts that C “is intended to be a lightweight language with a small 

footprint” (2005). He added “this characteristic of C leads to vulnerabilities when 

programmers fail to implement the required logic, because they assume it is handled by C 

when it is not. This problem is magnified when programmers are already familiar with 

superficially similar languages such as Java, Pascal, or Ada, leading them to believe that C 

protects the programmer better than it actually does. These false assumptions have led to 

programmers failing to prevent writing beyond the boundaries of an array, failing to catch 

integer overflows and truncations, and calling functions with the wrong number of 

arguments” (Seacord, 2005). 

 

Number Three: Objective-C 

 
C is a procedural function-oriented language, while Objective-C is object-oriented. In some 

ways it is not a different language than C, but a series of extensions based on an early 

object-oriented language called Smalltalk (iOS Developer Library, 2010). TIOBE research 

found that usage of Objective-C grew more than any of the other top ten languages – by 

2.74 percent from the year before. Currently 9.803 percent of programmers use Objective-C 

(TIOBE Software, 2013). To a large degree, this is because Apple’s operating systems and 

application programming interfaces use Objective-C (Apple Developer, 2012). This has 

allowed developers of apps to tap into the vastly growing market of iPhone and iPad users.  
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   Objective-C does address potential access-control problems through the use of objects 

that encapsulate data. Based on this approach, the optimal method is to show only a public 

interface that hides the internal operations. Therefore, a hacker has a far more difficult time 

gaining unauthorized access (iOS Developer Library, 2012). 

   Many hackers understand the limits of Objective-C, and enter malformed data to see 

what will happen (Secure Coding Guide, 2011). Un-validated input is a concern in 

Objective-C, which can enable code insertion vulnerabilities, format string vulnerabilities, 

and buffer overflows. Because of the addition of objects, developers have an advantage in 

reducing the risk of buffer overflows with Objective-C. NSString is an example of a Cocoa 

object that can manipulate strings (Programming4Us, 2011). Cocoa is a collection of APIs 

and runtime objects for Objective-C. According to mobile security expert Jeremy Allen, 

“All object allocations go on the heap, which helps prevent stack overflows since memory 

controlled by the coder does not live on the stack” (Allen, 2010). 

   Objective-C is a multi-threaded programming language that creates race conditions. 

These race conditions can be exploited. “Time of check-time of use” exposes a momentary 

gap. This is between the time a file or string is located and the time it is accessed. The 

attacker can then place a bad file in its place, and the software can write to it (Mac 

Developer Library, 2012). 

   Attackers can also exploit signal handing vulnerabilities. Objective-C’s signal 

handlers can execute code at random intervals. Even though one action may be expected to 

occur at a moment in time, if the signal handler sets a string in motion, it can create a race 

condition. Objective-C programmers should take extra effort not to use signal handlers (Mac 

Developer Library, 2012). 

 

Number Four: C++ 
 

Objective-C and C++ are both based on C and are object-oriented, but both have very 

different syntax. Because of the complexity and precision of the syntax, Linus Torvalds said 

that C++ is a “horrible language” (Harmful Stuff, 2007). Indian Institute of Science assistant 

professor Gaurav Tomar explains that “C++ [was] designed for general object oriented-

programming in the days when the typical computer was a standalone machine running a 

command line-based user interface” (2008). 

  TIOBE found that C++ usage grew by only 0.91 percent from the year before, and 

8.758 percent of programmers used it in February 2013 (TIOBE Software, 2013). C++ is a 

mid-level language and not as relevant to the mobile environment. Perhaps it is also less 

popular because it lacks runtime bindings, proxies, categories, and Interface Builder 

(Rutman, 2013). 

  Kragen Javier Sitaker is an Argentinian developer (Canonical, 2013). Sitaker 

compared the two languages and concluded they both “have a string class and containers in 

the standard library, and support for some automatic memory management in the language. 

This turns out to make a big difference in practice in reducing [those] vulnerabilities” (Y 

Combinator, 2013).  

  The C++ object library addresses buffer overflows. String library std::string 

combined with stream operators (>> and <<) reduces the likelihood of overflows. However, 

these can be compromised when a program uses C API functions instead of C++ 

(eTutorials, 2013). 
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  Among other issues, shared variables can cause race conditions in C++ with 

conditions such as simple increments of variables, loop indices, and shared class objects. 

Sun Development Network author Phyllis Gustafson advises developers to pay particular 

attention to even the most innocuous variables with critical regions or atomic directives. 

Any modifications to variables should be carefully considered in advance, because pitfalls 

in C++ are unpredictable (2013). 

  C++ enforces access-control restrictions within thread safety attributes, which is not 

customary. These attributes are attached to methods or fields. These methods have many 

intricacies that are used a compile, and only the most experienced programmers are likely to 

understand how to make certain compromises to get around the limitations of the C++ 

model without creating significant vulnerabilities (Blaikie, 2012). 

  Matasano Security’s founder observed, “C programs are susceptible to memory 

corruption. Programs written in practically every mainstream high level language are not 

susceptible to those problems (until they start using third-party C extensions). That’s the 

security win of not using C code.” Thomas H. Ptacek suggested, “One way to get C/C++ 

code fit into a web application is via ‘nosql’ databases, particularly Redis; let something like 

Ruby/Rack or Python/WSGI or Java Servlets soak up the hostile HTTP traffic, and use it to 

drive an async API over Redis. The Redis interface is also so simple that it’s very easy to 

hook C code up to it, and Redis is somewhat ‘typed,’ which reduces the amount of parsing 

you have to do” (Y Combinator, 2013). Needless to say, C++ is filled with landmines that 

many programmers cannot see. 

 

Number Five: C# 
 

The fundamental operators and style of C++ are leveraged in C# (called “C Sharp”), but also 

add concepts of Visual Basic (see Number Eight). C# executes the code in a controlled 

sandbox called the virtual machine, which compels software to be type safe. Objective-C, 

C++, and C# are all object-oriented. All code in C# must be enclosed within an object 

(Wikibooks, 2013). 

  According to TIOBE, C# is ranked 5th and is used for development on Microsoft 

.NET. It is considered by some to be appropriate for Internet programming, but it is not 

exactly a key enabler of today’s mobile apps (Godel, 2001). It’s usage shrank by a 

whopping -1.97 percent from the year before, decreasing more than any of the other top ten 

languages. Approximately 6.680 percent of code uses C# (TIOBE Software, 2013). 

  C# is viewed by some as a significant improvement on C++, especially in the areas of 

versioning, events, and garbage collection. C# programmer Hafeez Mohammed explained 

that the “framework allows you to forget about memory management. It’s incredibly 

scalable, and even brings an end to the infamous 'DLL Hell' by getting rid of globally 

unique identifiers (GUIDs), registration, and all that automatically.” C# says goodbye to 

buffer overflows and significantly improves the state of race conditions (Mohammed, 2013). 

Yet, the runtime system’s garbage collector in C# is not foolproof. However, in conjunction 

with destructors (dtors) and finalizers, it is sufficiently reliable to assume that programmers 

don’t need to stress about freeing of memory resources (Mehra, 2009). 

  In the .NET framework, C# allows applications to be scanned for vulnerabilities 

(Mehra, 2009). This tool is good as a final check before an application goes live or ships, 

but developers need to deal with C# vulnerabilities as they work. SQL injection, packet-
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sniffing, session hacking and cross-site scripting (XXS) problems are known weaknesses. 

All SQL commands should be replaced with parameterized queries or stored procedures to 

avoid SQL injection. Secure https should always be used to avert session hijacking and 

packet-sniffing. HTTP-only is the secure standard when setting cookies, in order to avoid 

cross-site scripting predicaments (Ideal Programmer, 2009). These are best practices, but it 

is essential that a programmer stay abreast of vulnerabilities as soon as they are made 

public. 

  When C#.NET vulnerabilities can be corrected, Microsoft releases patches on the first 

Tuesday of each month. This is called “Patch Tuesday.” The following day is known as 

“Exploit Wednesday” (Peterson, 2009). David Aucsmith made a startling statement about 

patch releases: “We have never had vulnerabilities exploited before the patch was known.” 

Aucsmith is Senior Director at the Microsoft Institute for Advanced Technology in 

Governments (Bradley, 2013). In essence, the release of patches is a clue to hackers as to 

where they can take advantage of vulnerabilities that have not been patched. C# is 

somewhat stable, and major new flaws are not frequently discovered, which is not true of 

PHP. 

 

Number Six: PHP 

 
.NET and PHP are the two leading development frameworks for dynamic web sites. 

Dynamic sites provide user experiences that vary from person to person, depending upon the 

choices of the user, or cookies that the person’s browser contains. PHP is the foundation for 

popular web development applications such as Drupal, Joomla, and Wordpress. TIOBE 

concluded that PHP is the sixth language in terms of usage. It’s popularity decreased by a 

modest -0.57 percent from the year before, and 5.074 percent of programmers used PHP as 

of February 2013 (TIOBE Software, 2013). A low level of security may be one reason for 

the decline. 

  Interestingly, the first version was a collection of Perl (see Number Nine) scripts in 

1995, called Personal Home Page (PHP) tools. Hence the name PHP was born, but what it 

represented changed dramatically. In 1997, the next version was rewritten in C and was 

called PHP Form Interpreter. The third version emerged with APIs, databases and protocols 

and was called PHP Hypertext Preprocessor. This name has stuck, but the structure changed 

again in 2000. Version 4 was based on an open-source scripting engine called Zend Engine 

(Grubb, 2012).  

  Object-oriented PHP seemed like a real breakthrough in terms of ease of use for 

programmers, but in 2006 a major vulnerability was discovered with Zend Engine 

hashtables (Esser, 2013). Arrays in PHP are ordered hashtables (Swanson, 2013). Not 

surprisingly, hash indices in PHP are both alphabetical and numerical. The function 

zend_hash_del_key_or_index contained a flaw that inadvertently deleted a bucket-slot 

belonging to numerical keys, even though instructions may have called for the alphabetical 

bucket to be deleted. As a result, the wrong variables are deleted in PHP’s symboltable, and 

the incorrect elements are removed from arrays (Esser, 2013). This vulnerability was fixed 

with a patch of PHP4 six months after it was discovered, but it was the first of many major 

problems. Over time, it has become apparent that PHP is terribly flawed. Approximately 

one-third of all the problems listed in the National Vulnerability Database are associated 

with PHP (DHS National Cyber Security Division/US-CERT, 2013). 
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  The most recent patch of PHP that was released in 2013 is 5.4.12 (PHP Group, 2013). 

It includes fixes for Core, Date, FPM, Litespeed, sqllite3, PDO_OCI and PDO_sqllite (PHP 

Group, 2013). PHP does not have Patch Tuesday; it actually publishes a list of 372 

categories of bugs and vulnerabilities, with a total 64,156 items. Anyone – including hackers 

– can go to this site and see 2080 bugs or vulnerabilities that just can’t be fixed (PHP Group, 

2013). Some are false reports, while others are minor and leave little for room for hackers to 

exploit. Some bugs are legacy problems that PHP Group no longer supports. However, as 

innocuous as some bugs might appear, bad actors could find ways to exploit a limitation. 

For example, “Mod doesn't return correct values” is a posting about a problem with the 

calculation of large numbers. Derick Rethans of PHP Group responded that “PHP only 

supports signed integers (range is -2147483648 to 2147483647 on Linux), so this is actually 

the expected behavior” (PHP Group, 2013). Therefore, attackers might be able to exploit 

this limitation by creating a calculation that would result in a number greater than 

2,147,483,647. In large transactions, this might be a disaster. 

  “Beware: Some MySQL table types (storage engines) do not support transactions.” 

This is a warning that appears in the PHP online manual. The manual continues: “When 

writing transactional database code using a table type that does not support transactions, 

MySQL will pretend that a transaction was initiated successfully. In addition, any data 

definition language (DDL) queries issued will implicitly commit any pending transactions” 

(PHP Group, 2013). That is almost unbelievable. 

  PHP is a scripting language, while MySQL is a relational database management 

system that both use the same server nearly 99 percent of the time (Yahoo Answers, 2012). 

They are connected with PHP Data Objects (PDO) (PHP Group, 2013). There are five 

dynamic MySQL options or variables that present security problems: 

automatic_sp_privileges (system variable), local_infile (system variable), old_passwords 

(system variable), safe-show-database (option file and system variable) and secure-auth 

(option file and system variable) (MySQL, 2013). Server access is a huge issue that must be 

carefully controlled and monitored with PHP and MySQL. 

  There are several steps that can be taken to address PHP/MySQL vulnerabilities. 

Installation of patches as soon as they are released is essential. SQL injections are enabled 

by bugs in PHP code, and injections can be averted by disabling the use of LOCAL INFILE. 

Remote access should be restricted, or better yet, disabled. The command bind-address=(IP 

address) will cause the server to only respond to localhost. Accounts must be frequently 

reviewed. Obsolete and anonymous accounts should be deleted, while system and database 

privileges should be limited. Simple things, like changing the root username to another 

name, can make it much more difficult to for attackers to assume the root identity. The root 

directory can also be changed, so that hackers cannot run UNIX commands to manipulate 

the directory system. PHP does not automatically run logs of activity on the database. 

Logging needs to be enabled so that intrusions and errors can be tracked (Green SQL, 

2013). Administrators must check these logs frequently in PHP because it is so deeply 

flawed in this regard.  

 

Number Seven: Python 
 

In contrast to PHP, the Python Security Response Team only shares vulnerabilities with 

what it describes as a “highly trusted cabal of Python developers” (Python, 2013). They 
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actually attempt to avoid the mistakes that lead to Exploit Wednesday. 

  The Django framework is based on Python, but it is not strictly a language used for 

web development. Many games are built with it (Fuecks, 2013). Python is a high level 

language that uses natural language elements, intended to be easy to learn, perhaps easier 

than PHP (Python, 2013). Y Combinator co-founder Paul Graham observed, “People don’t 

learn Python because it will get them a job; they learn it because they genuinely like to 

program and aren’t satisfied with the languages they already know.” He asserted that the 

source code is more attractive and less complicated (Graham, 2004). This may account for 

its relatively robust growth. TIOBE found that Python grew significantly by 1.8 percent 

from the previous year, and 4.949 percent of programmers used Python as of February 2013 

(TIOBE Software, 2013). 

  Python has different versions, such as CPython and IronPython. The Python 

Interpreter in CPython is based on C and can lead to buffer overflows. Other versions, such 

as IronPython and Jython, are based on Java and C# and have an added layer of protection 

(Velocity Reviews, 2013).  

  Concurrency is parallel processing. Message passing and shared data are two 

standard models of concurrency, an approach that attempts to address race conditions with 

most routine Python programs (Nagle, 2013). Message passing relies on a queue to break a 

job into smaller segments that are organized by simple objects. More complex jobs contain a 

poison pill that can halt the processes and avoid race conditions (Hellman, 2013). Python 

programmer John Nagle noted, “Shared data is permitted, using AtomicObject or 

SynchronizedObject objects. So, if there’s a big data structure being updated by multiple 

threads, it can be shared between threads. Within an AtomicObject or SynchronizedObject 

object, race conditions are automatically prevented by the automatic locking” (Nagle, 2013). 

However, the National Vulnerabilty Database has found that Python 2.6 through 3.2 does 

create race conditions that allow users to obtain credentials after they access ~/.pypirc under 

certain circumstances (DHS, 2013). This is also an access-control vulnerability. Yet, Python 

seems to have fewer vulnerabilities than some of the other languages. 

 

Number Eight: Visual Basic 
 

Programmer David Rutten claims that Visual Basic (VB) is “much friendlier than Python.” 

He doesn’t like Python because it is both case sensitive and indentation sensitive (Rutten, 

2013). In February 2013, TIOBE ranked VB at number eight. Its usage grew by a meager 

0.33 percent from the previous year, and 4.648 percent of new programs on Microsoft 

platforms have VB code (TIOBE Software, 2013). It is more than a language, but rather a 

system that creates new possibilities for developers who work with the Windows operating 

system. It enables developers to actually visualize the interface (Mabutt, 2013). 

 VB is not without buffer overflows. For example, Microsoft Animation ActiveX 

control in 6.0 allows remote hackers to run arbitrary code with an audiovisual interleave 

(AVI) file. This causes memory corruption and an ‘allocation error.’ (CVE Details, 2013). 

Enterprise Edition 6.0 is also vulnerable when a long CommandName line or 

ConnectionName line is abused in a Micrografx Designer Graphic (.dsr) file (CVE Details, 

2013). There are more examples, but space is limited. 

  Race conditions are also a known vulnerability in VB. Microsoft recommends the 

locking of shared variables. If properly written, a sequence allows one thread to access to 
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the shared variable at a time (Microsoft Support, 2013). Access-control is another common 

problem that also plagues VB. Therefore, security policies and appropriate access 

permission levels are essential ways to control access and manage risk (Microsoft Support, 

2013). 

  VB 11.0 was rolled out in 2012 on the .NET framework. Objects have continued to be 

a vital component of VB throughout its evolution, yet syntax has changed dramatically since 

the release of VB 6.0. It is no longer backward compatible. One of the biggest changes was 

a radical new edit-and-continue function at the source code level. As a result, security 

vulnerabilities are much more difficult to fix. For example, Microsoft acknowledges that 

“you must change the target platform and compile the application as a 32-bit application” if 

a coder is debugging a 64-bit application and wishes to use Edit and Continue (MSDN, 

2013). Several efforts to improve security have been criticized by programmers because it 

creates much more work and slows processes, such as start-up time. Common Language 

Runtime virtual machine from Microsoft is designed to run secure managed code, while 

operating with unmanaged code. From a security standpoint, this is good because there are 

error-handling mechanisms (Keserovic et al., 2013). In the end, many of these processes 

introduced by Microsoft force the programmer to do the right thing, and that is time 

consuming. More programming languages and support communities could learn from 

Microsoft, at least in this regard. 

 

Number Nine: Perl 

 
VB only runs on Windows, while Perl runs on multiple operating systems. Both are object-

oriented (Perlmonks, 2013). Usage of Perl declined slightly by -0.68 percent from the 

previous year; TIOBE found that 2.252 percent of programmers use Perl as of February 

2013 (TIOBE Software, 2013). It has a reputation among some coders as archaic and 

arcane. Paul Venezia observed that, “Perl has been an instrumental part of the innovation 

and technological advancements of the last two decades, and it’s served as a catalyst for a 

significant number of other languages that have contributed heavily to the programming 

world in general” (Slashdot, 2013). That being said, Perl is not exactly a dinosaur. Its code 

is the basis for web development applications such as Movable Type, Ticketmaster and 

LiveJournal. It is also the basis for web application development frameworks, including 

Catalyst and Titanium (Home of Szabgab, 2013). 

 It began as a UNIX scripting language, and Perl does draw more than inspiration 

from C. Shell scripting; data extraction utility AWK and stream editor (sed) parser are all 

borrowed directly from C. Parsing is a big part of what made Perl a big deal in the 1990s, 

and enabled common gateway interfaces (CGIs) to serve dynamic content as the dot.com 

boom was unfolding (W3C, 2013). The power of Perl’s CGI capacity is also a security 

weakness. Clients can gain unauthorized access. As a result, there are many examples of 

havoc. The simplest way to limit the risk is to cut off the access of certain functions. For 

example, server-side includes should be turned-off. Access via UNIX – especially in the 

Bourne shell – should be restricted. In particular, special characters can be used by an 

attacker in Bourne and can confuse the script, thus gaining access without authorization 

(Apache Admin, 2013). 

  Perl has a number of features that are designed to prevent attacks. For example, it has 

a sophisticated mechanism to avert algorithmic complexity attacks. These attacks often lead 
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to denial of service (Crosby & Wallach, 2013). Developers of Perl have ingeniously created 

a hashing function to recalculate keys to change the order of the elements of the message. 

However, as clever as this fortification is, Yves Orton found that there is a vulnerability that 

is exploitable (Best Practical, 2013). To be successful, attackers induce an execution time 

that is “worst-case” (Crosby & Wallach, 2013). In normal usage, the worst case is nearly 

impossible, but the vulnerability is that it creates a condition in which hash tables 

experience collisions. This can happen when there are two identical values, either the 32-bit 

hash value or when the result of a division (modulus) operation becomes identical (Crosby 

& Wallach, 2013).  

 Perl was not developed as an object-oriented language. Many programmers wish to 

use objects because they allow programs to locate, access, modify and secure data. Based on 

this, semantics, syntax, special variables, modules and packages have been added by some 

to make Perl object-oriented (Conway, 1999). It can be argued that this added complexity 

additional security vulnerabilities. 

 

Number Ten: Ruby 

 
Perl and Ruby are diametrically opposed on many levels, with the exception of their 

syntaxes (C2, n.d.). Both borrow a great deal from C (Cunningham & Cunningham, 2013). 

Perl offers many ways to accomplish the same thing. Ruby was written as an object-oriented 

language from the beginning and is much more rigid. This rigidity could also be viewed as 

more consistent, simple, and even elegant, so that fewer things that can go wrong (Morin, 

2013). TIOBE found that Ruby’s usage grew by 0.19 percent from the previous year, and 

1.75 percent of programmers use Ruby as of 2013. Ruby displaced JavaScript as the tenth 

most popular language (TIOBE Software, 2013). 

  Media and conference entrepreneur Tim O’Reilly is keen on the open source 

framework: “Ruby on Rails is a breakthrough in lowering the barriers of entry to 

programming. Powerful web applications that formerly might have taken weeks or 

months�to develop can be produced in a matter of days” (Ruby on Rails, 2013). Ruby may 

be number ten, but is popular enough to have been used to build web applications for 

Groupon, Lumosity, and the White Pages (Ruby on Rails, 2013). 

 Such sites use eXtensible Markup Language (XML). XML is a very popular format to 

share structured data over networks and the web. An XML parser allows the receiving 

computer to read the incoming structured data. Needless to say, having to disable the parser 

because of a security flaw would be an interruption to eCommerce. An access control flaw 

was first noted in passing by a developer in a web forum in 2007. Ramifications of the flaw 

in the XML parser were explained this year by Aaron Patterson, which finally prompted a 

patch by 37Signals, the firm behind Rails. Patterson explained that Ruby on Rails allows an 

attacker to “bypass authentication systems, inject arbitrary SQL, inject and execute arbitrary 

code, or perform a DoS attack on a Rails application.” During the six years after the flaw 

was found, Ruby on Rails was vulnerable to significant mischief (Lee, 2013). 

  Ruby developers can manage security vulnerabilities, but their supervisors should 

support the additional time needed to test for insufficient transport layer protection, 

injection, cross-site scripting, broken authentication (and session management), insecure 

cryptographic storage, insecure direct object references, security misconfiguration, cross-site 

request forgery, failure to restrict URL access, and un-validated redirects and forwards. 
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Ruby was created with the intention of reducing security vulnerabilities, but its C-like 

syntax does not help that cause. Ruby has a filter that offers a workaround to prevent SQL 

injections. However, Ruby programmers need to be aware that they must use Model.find(id) 

or Model.find_by_some thing(something). This avoids line breaks and written symbols 

(VeraCode, 2013). 

   There are security review platforms for many languages and applications, including 

Ruby. Veracode claims to provide governance, operating controls, eLearning, and 

application intelligence, in addition to its scanning capabilities (VeraCode, 2013). However, 

it is not enough to run tests after an application is “complete.” It is essential for 

programmers to be aware of how to minimize vulnerabilities as they build software. They 

must also stay informed on a daily basis of flaws that become known. They must also 

download patches as soon as they become available and avoid posting vulnerabilities in 

online forums. 

 

CONCLUSION 

 
Deloitte conducted a survey and found that 87 percent of CIOs were most concerned about 

software development quality as the top threat in the pantheon of risks they face (Deloitte, 

2007). One should not just point their finger at programmers. In many cases, flawed 

specifications and designs are the root cause. In other cases, there is more complexity than 

the budget or team can handle. Complexity is closely associated with insecurity because it 

creates more variables that can be exploited because of unintended or unexpected 

interactions. However, it is very common to see a lack of understanding in secure coding 

practices among programmers.  

  The Software Development Process Lifecycle requires the close supervision of a 

project manager who understands the critical nature of security. A CIO should also sign-off 

at each stage, starting with system conceptualization, system requirements of the system, 

analysis of benefits, and scope of project. The business and system analyses are critical and 

must include security parameters for programmers in software requirement specifications. 

System, architectural and detail design then provide additional opportunities for 

management to maintain quality controls for developers. Once the planning and design 

stages are approved, unit development, software and system integration, followed by testing 

and retesting, are critical. Clients are often most aware of the software during installation, 

site testing and acceptance, training/documentation, implementation and maintenance. 

However, that is too late for countermeasures for the vulnerabilities to be effective (Center 

for Technology in Government, University at Albany/SUNY, 1998). 
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