
OC15065

Challenges in database design with Microsoft Access

Jerzy Letkowski

Western New England University

Abstract

Design, development and explorations of databases are popular topics covered in introductory

courses taught at business schools. Microsoft Access is the most popular software used in those

courses. Despite quite high complexity of Access, it is considered to be one of the most friendly

database programs for beginners. A typical Access textbook teaches students first how to design

and build databases. Next the students are exposed to forms, reports and queries. Advanced

courses also delve into applications of modules and macros. In many database design situations,

separation of a logical data model from its physical implementation is necessary. Nontechnical,

subject-matter, experts and end-users can better understand the logical data model and thus they

can help improve the model’s structure. This paper focuses on the database design phase. It

shows a database design cases implemented in MySQL Workbench and in Microsoft Access. It

also attempts to expose some difficulties and anomalies that may be encountered when using

exclusively Microsoft Access.

Keywords: database, design, data model, table, relationship, query.

OC15065

DATABASE DESIGN PROCESS

A typical database design process involves requirement analysis, conceptual (high level)

design, and logical design—all leading to a physical design (Elmasri, at al., 2004, p. 51). The

final logical data model should be specific enough in order to be mapped onto a physical

database. As shown, for example, in (Letkowski, 2014), a data model—developed as an

Enhanced Entity Relationship Diagram (EERD) in MySQL Workbench—can be automatically

transformed into a physical design (database schema). Such a model includes a complete set of

entities, attributes, key, relationships, cardinality and participation constraints that are necessary

to accurately define a physical database (Silberschatz, at al., 2001, p. 27-37).

Building a data model (EERD), using systems like MySQL Workbench, depends more on

the subject-matter (domain) expertise than on the database skills. A subject-matter expert, who

understands simple concepts of an entity (or class) and relationship can decidedly contribute to

development of the data model. The following example shows a simulated scenario1 of the

database design process with two participants: a domain expert (a sales manager, “Mark”) and

database expert (a database administrator, “Debbie”).

Mark: “I have been managing my sales for quite some time, using a phone and spreadsheet

based ordering system. Recently, I have read some interesting articles about how my job can be

improved by switching to a Web based system.”

Debbie: “You understand that a Web system requires a multiuser and concurrent access to your

data! Thus you can’t use your spreadsheet program. You would have to move to a database

solution.”

Mark: “Yes, I have read about that too. Can you help me with designing a database? I’d like to

see, for example, how basic information about customers, orders and products can be stored in

the database.”

Debbie: “Absolutely! Could you briefly explain how your system works? At this stage, let’s us

focus on capturing and modeling information about orders.”

Mark: “It is quite simple. We maintain a list of customers and products. Our customers place

orders from time to time. We make sure that each order belongs to one and only one customer.

The orders include some of our products—mainly small pieces of furniture (desks, chairs,

shelves, etc.). Each product may be part of many orders.”

Debbie: “I get it! Would you agree that your basic data entity sets (or object sets) are: Customer,

Order and Product?

1 This scenario is loosely based on the Pine Valley Furniture case presented in (Hoffer, at al., 2005 p. 63-70).

OC15065

Mark: “Indeed they are! As a matter of fact they are already maintained in our current system as

spreadsheet lists. Our customers are mainly businesses so we store ‘name’, ‘addresses’, contact

information (‘phone’, ‘fax’, and ‘email’). Our orders includes ‘order date’ and reference to the

customers who placed them (‘cid’). Finally, our products are characterized using such properties

as ‘description’, ‘finish’, ‘unit price’, and ‘quantity on hand’. ”

Debbie: “Great! You can also say that they (entity sets) are organized as tables. If so, they will

be organized in a database in almost the same way—as database tables. We have to make sure

that all rows in the tables are unique. To this end, for each table, we will create an identifier that,

as you probably know, is referred to as a Primary Key (PK).”

Mark: “I thought it would be much harder. In fact, we use integers to identify particular rows in

the spreadsheet tables so we could easily look up relevant data, for example, when generating

invoices. Our identifiers are: ‘cid’ (customer ID), ‘poid’ (Order ID), and ‘pid’ (Product ID).”

Debbie: “Outstanding! Indeed, a spreadsheet lookup procedure comes very close to what we

refer to in a database as a relationship. Later, in the database, you will be able to generate

invoices by just using relationships, speaking of which, you have already mentioned the most

important ones. Let me formalize them, using already established entity sets, as:

 <Customer(1) – places – Order(1..n)>

 <Order(0..n) – includes – Product(1..n)> “

Mark: “I kind of get it but not entirely.

Debbie: “The first relationships is of type ‘one-to-many’. As you mentioned, a customer may

place one or many orders (1..n). In the same time, each order belongs to one (1) and only one

customer. The second relationship is of type ‘many-to-many’. One order may include many

products (1..n) and one product may be part of zero or many orders (0..n). These entities and

relationships plus the attributes you mentioned above are all we need to construct a data model—

the so called Entity Relationship Diagram (ERD). I will show you how to do it, using the 2014

version of MySQL Workbench2. The first step is to define the basic entities: Customer, Order

and Product. Start MySQL workbench, create a new EERD model and, using the Table tool add

the three entities, providing their names and attributes. Make sure that each entity has its own PK

(Primary Key). Figure 1 shows the resulting diagram. Notice that, contrary to a spreadsheet

implementation, each of the attributes must have appropriate type. The generic types (INT,

FLOAT, DATETIME) are obvious. VARCHAR and CHAR stand for text types. The former

speciffies the maximum size (capacity) and the latter—the exact size. Next, the relationships

between the entities must be defined. They are a reflection of business. The Customer - Order

relationship is created, using a Non-Identifying, One-To-Many relationship (1:n) by and

2 A complete (detail) procedure for developing a data model (EERD), using MySQL Workbench is shown in

(Letkowski, 2014).

OC15065

connecting entity Order with entity Customer. A new attribute is added automatically to entity

Order: Customer_cid (Figure 2).”

Mark: “Why is the Non-Identifying Relationship used here? What does it mean? “

Debbie: “Both the entities (Customer and Order) are already identified by their primary keys

(cid, and poid). The additional field, Customer_cid, added to entity Order does not uniquely

identify any order. It simply points to the customers that ‘own’ the orders.”

Mark: “It makes sense. What about the new attribute, Customer_cid? It looks like a copy of the

primary key ‘cid’ in entity (table) Customer. In our spreadsheet implementation we use a similar

approach in order to be able to lookup customer information in our invoices.”

Debbie: “Indeed it acts like a copy. Such an attribute is called a Foreign Key (FK). Its role is to

make sure that each order ‘knows’ its owner. One can also say that each order matches (Harkins,

2004) its customer. In addition, the database system should ensure that each value of this

attribute is one of the values of the related primary key, ‘cid’ defined in table Customer. This

kind of validation is referred to as Referential Integrity. It is also important to note that this new

key, Customer_cid, is strictly connected to the relationship between entities Order and Customer.

Removing the key will also remove the relationship (connection line) and vice versa.” It is very

important to understand that a foreign key only exists in the context of a relationship. It is a

property of an entity (table) whose instances (records) depend on or are spawn by an instance of

the related entity. With respect to the Customer – Order relationship, a customer places (creates)

one or more orders. Each order is ‘signed’ by one customer. This signature is represented by the

foreign key.”

Mark: “OK, I got it! The PK-FK pairs reflect particular relationship instances which arise from

business operations (rules). I could say that the role of the Primary Key is to maintain the Entity

Integrity and the role of the Foreign Key is to ensure the Referential Integrity.”

Debbie: “Very important points! Unlike spreadsheets, databases help us maintain data integrity.

Out next step is to take care of the second relationship (Order – Product). This time we will use a

Many-to-Many Relationship tool (‘n:m’). There is only one version of this tool: the Identifying

Relationship. When two entities are connect with this tool, a new entity is spawned as shown in

Figure 3. This is a so called associative entity. It may not exist on its own. Both the entities,

Order and Product, are needed for this new entity to exist. Its business role is to ‘know’ which

product is part of which order. It is frequently described as an order detail, invoice line, or order

line. We will use the latter (OrderLine) to name this new entity.”

Mark: “This all sound reasonable. I can see that we are almost there. There is one extra piece of

information missing. We should not forget to add the ‘order quantity’, or just ‘quantity’ to this

new entity.”

OC15065

Debbie: “Excellent! This is why domain experts should always participate in database design

processes. Like nobody else, they know the business rules and can anticipate what information

will be needed in order to perform all sorts of business operations and decisions. To wrap up our

design, let us rename the new entity and new attributes. I would also recommend to rename

entity Order to PurchaseOrder. Some systems, like MySQL, do not accept user defined names

that coincide with reserved word (e.g. Order). Figure 4 shows the final version of the model. ”

Mark: “So now, how do we convert this model into a ‘real’ database?”

Debbie: “With MySQL, we can automatically generate the database structure or what it is

known in the database ‘world’ as the database schema. This is why the model, we have just

created, is called an ‘Enhanced’ Entity Relationship Diagram3.”

DESIGNING A DATABASE IN ACCESS USING SQL

 Using the data model, like the one shown in Figure 4, a database expert should be able to

develop manually appropriate SQL - CREATE TABLE statements that would create the

database schema. MySQL Workbench can generate such statements automatically from the

EERD model4. The resulting statements are fully compatible the MySQL database system:

CREATE TABLE IF NOT EXISTS `Customer` (
 `cid` INT NOT NULL,
 `name` VARCHAR(100) NOT NULL,
 `address` VARCHAR(100) NULL DEFAULT NULL,
 `city` VARCHAR(40) NULL DEFAULT NULL,
 `state` CHAR(2) NULL DEFAULT NULL,
 `zip` VARCHAR(20) NULL DEFAULT NULL,
 PRIMARY KEY (`cid`));
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `Product` (
 `pid` INT NOT NULL,
 `description` VARCHAR(200) NULL DEFAULT NULL,
 `finish` VARCHAR(50) NULL DEFAULT NULL,
 `unitPrice` FLOAT NULL DEFAULT NULL,
 `onHand` INT NULL,
 PRIMARY KEY (`pid`))
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `PurchaseOrder` (
 `poid` INT NOT NULL,
 `poDate` DATETIME NULL DEFAULT NULL,
 `cid` INT NOT NULL,
 PRIMARY KEY (`poid`),
 CONSTRAINT `fk_Order_Customer`
 FOREIGN KEY (`cid`)
 REFERENCES `Customer` (`cid`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

3 The EERD examples, included in this paper, show the logical data model implemented in UML. Since many

database developers also develop applications, using Object-Oriented language it is convenient for them to express

the model, using the Object-Oriented design language—UML (Naiburg, Maksimchuk, 2001).
4 It can be done by means of menu options (commands): Database + Forward Engineer (Letkowski 2014).

OC15065

CREATE TABLE IF NOT EXISTS `OrderLine` (
 `pid` INT NOT NULL,
 `poid` INT NOT NULL,
 `quantity` INT NULL,
 PRIMARY KEY (`pid`, `poid`),
 CONSTRAINT `fk_Product_has_Order_Product1`
 FOREIGN KEY (`pid`)
 REFERENCES `Product` (`pid`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `fk_Product_has_Order_Order1`
 FOREIGN KEY (`poid`)
 REFERENCES `PurchaseOrder` (`poid`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

Microsoft Access can execute such statements but it does not accept the following

tokens: ‘IF NOT EXISTS’, ‘ENGINE = InnoDB’, ‘DEFAULT NULL’, ‘ON DELETE NO

ACTION’, and ‘ON UPDATE NO ACTION’. After removing these token in a text editor, the

remaining SQL code can be executed in the SQL (Data Definition) panel of the Query

environment in Access. Each of the create-table statements must be executed separately. Figure 5

shows execution the last of the following SQL statements:

CREATE TABLE `Customer` (
 `cid` INT NOT NULL,
 `name` VARCHAR(100) NOT NULL,
 `address` VARCHAR(100) NULL,
 `city` VARCHAR(40) NULL,
 `state` CHAR(2) NULL,
 `zip` VARCHAR(20) NULL,
 PRIMARY KEY (`cid`)
);

CREATE TABLE `Product` (
 `pid` INT NOT NULL,
 `description` VARCHAR(200) NULL,
 `finish` VARCHAR(50) NULL,
 `unitPrice` FLOAT NULL,
 `onHand` INT NULL,
 PRIMARY KEY (`pid`)
);

CREATE TABLE `PurchaseOrder` (
 `poid` INT NOT NULL,
 `poDate` DATETIME NULL,
 `cid` INT NOT NULL,
 PRIMARY KEY (`poid`),
 CONSTRAINT `fk_Order_Customer`
 FOREIGN KEY (`cid`) REFERENCES `Customer` (`cid`)
);

CREATE TABLE `OrderLine` (
 `pid` INT NOT NULL,
 `poid` INT NOT NULL,
 `quantity` INT NULL,
 PRIMARY KEY (`pid`, `poid`),
 CONSTRAINT `fk_Product_has_Order_Product1`
 FOREIGN KEY (`pid`) REFERENCES `Product` (`pid`),
 CONSTRAINT `fk_Product_has_Order_Order1`
 FOREIGN KEY (`poid`) REFERENCES `PurchaseOrder` (`poid`)
);

OC15065

The resulting Relationships diagram (Figure 6) is similar to the original data model

(Figure 4). Access shows all cardinality constraints but without the participation constraints. For

example, according to the original model the participation of entity OrderLine in the OrderLine –

Product relationship is optional. This detail is not revealed in Access. This relationship is shown

in Access as <OrderLine(∞) – Product(1)> whereas in the original model it is defined as

<OrderLine(0..n) – gets – Product(1)>. Symbols ‘∞’and ‘n’ both stand for ‘many’.

Another interesting aspect of the Relationships diagram in Access is that the relationships

are not firmly coupled with their foreign keys. For example, contrary to the MySQL Workbench

model, removing a relationship does not remove the foreign key standing behind the relationship.

Adding records to Access tables via SQL is somewhat challenging. Only one SQL-Insert

statement can be executed at a time in the SQL–Query panel. A macro command is needed to run

multiple SQL-Insert statements. The following VBA code will execute sequentially all SQL

statements contained in a plain-text document, sql.txt, stored in directory C:\db:

Sub BatchSQL()
 Dim fileRef As Integer
 Dim txtSqlStatements As String
 Dim sqlStatmentList As Variant
 Dim sqlStatement As Variant

 fileRef = FreeFile()
 Open "C:\db\sql.txt" For Input As #fileRef
 txtSqlStatements = Input(LOF(fileRef), #fileRef)
 Close fileRef
 sqlStatmentList = Split(txtSqlStatements, ";")

 On Error Resume Next
 For Each sqlStatement In sqlStatmentList
 CurrentDb.Execute sqlStatement
 Next
End Sub

Having all the tables populated with data, Access is now ready for applications. The

phone based ordering system can benefit from more friendly and reliable input forms. Relevant

information can be quickly retrieved using queries. Finally, the management can benefit from

periodically generated reports. However, these problems go beyond the scope of this paper. They

are exhaustively addressed, for example, in (Adamski, at al., 2011) and (Poatsy, at al., 2014).

DESIGNING A DATABASE IN ACCESS USING THE GUI

 Teaching database concepts and applications in business curricula is typically driven by

tutorial based instructions provided by popular textbooks like (Adamski, at al., 2011) or (Poatsy,

at al., 2014), utilizing mainly the GUI environment of Microsoft Access.

Students learn first how to build database tables. They are not exposed to design issues

extensively. Typically, they are brought directly into physical databases, learning technical

aspect of navigating in a maze of menus, toolbars, dialog panels, and other Windows widgets.

For example, (Adamski, at al., 2011, p. AC1-AC48) starts with Tutorial 1, “Creating a

Database”. The students are introduced to basic database terminology, including notion of

OC15065

‘field’, ‘table’, ‘database’, ‘primary key’, ‘foreign key’, and ‘relationship’. They also learn in this

tutorial how to develop a simple ‘query’, ‘form’, and ‘report’. The concept of a relationship is

explained by means of the primary key and the foreign key. A similar approach is shown in

(Poatsy, at al., 2014, p. 83-140). The students first learn how to use an existing database by

performing simple sorting and filtering operations, next they are introduced to relational database

issues where relationships are explained again, using the primary and foreign keys.

It is beyond the scope of this paper to show all details of the database development

process performed with the Graphical User- Interface (GUI) in Access. (Adamski, at al., 2011)

and (Poatsy, at al., 2014) do it thoroughly. Additional instructive materials can also be retrieved

directly from Microsoft (MS Access – Guide, 2014), (MS Access – Relationship, 2014).

However it is important to notice that the Access-GUI based process is not entirely consistent

with the common system development process. This process, as shown in the previous section

(DESIGNING A DATABASE IN ACCESS USING SQL), adheres to the principles and

structure of the system development life cycle (SDLC) involving a sequence of tasks such as

(Hoffer, at al., p.46):

1. Identification

2. Initiation and Planning

3. Analysis

4. Logical Design

5. Physical Design

6. Implementation

7. Maintenance

In Access, steps 4 and 5 are intertwined or somewhat reversed. Given a fully developed

logical data model for a relational database should include both the entity and referential

integrity features, as shown, for example, in (Figure 4), such a model can’t be developed in

Access without first building a physical database. More over this model must (up front) include

all necessary foreign keys. Figure 7 shows a ‘Design View’ for table PurchaseOrder. The

pid and poid fields play two roles. They define both the primary key of the table and the

foreign keys, linking this table to tables Product and PurchaseOrder, respectively. At this

stage, this table definition is equivalent to the following SQL statement:

CREATE TABLE `OrderLine` (
 `pid` INT NOT NULL,
 `poid` INT NOT NULL,
 `quantity` INT NULL,
 PRIMARY KEY (`pid`, `poid`)
);

Moreover, the foreign keys, pid and poid, kind of exist but they are not formally

acknowledged or marked up as such. By contrast, the MySQL Workbench design (Figure 4)

shows the PurchaseOrder entity with all its bells and whistles, identifying explicitly the

OC15065

relationships and producing a physical table that is fully compliant with both the entity and

referential integrity rules:

CREATE TABLE `OrderLine` (
 `pid` INT NOT NULL,
 `poid` INT NOT NULL,
 `quantity` INT NULL,
 PRIMARY KEY (`pid`, `poid`),
 CONSTRAINT `fk_Product_has_Order_Product1`
 FOREIGN KEY (`pid`) REFERENCES `Product` (`pid`),
 CONSTRAINT `fk_Product_has_Order_Order1`
 FOREIGN KEY (`poid`) REFERENCES `PurchaseOrder` (`poid`)
);

In order to bring this and other tables to the same status in Access, a ‘Relationships’ diagram

must be completed. Figure 8 shows an initial diagram with all the database [physical] tables

included. For the foreign keys to become the first class citizens, they must be linked with their

respective primary keys. Figure 9 shows the final phase for completing the logical and physical

design. The primary key, pid, of the Product table is dragged-and-dropped onto (linked to)

the foreign key, pid, of the OrderLine table and the ‘Enforce Referential Integrity’ option is

checked. All other relationships are defined in a similar way. The database is ready for

application development (queries, forms, reports, etc.).

CONCLUSIONS

The entire GUI based database design process leads to the same result as the MySQL

Workbench one (Figures 6 and 9). However, it is important to note a subtle difference between

these two ways. The EER diagram tool of MySQL Workbench uses relationships to generate

foreign keys. It also is capable of generating associative entities when many-to-many

relationships are being resolved. The resulting model is fully compliant with the entity and

referential integrity constraints. On the other hand, the GUI tools in Access require a physical

database that satisfies the entity integrity constraints. Finally, by developing the Relationships

diagram, the database becomes 100% relational.

An intriguing question remains. Should business students learn how to design databases

according to the SDLC process? The current approach seems to be some sort of Prototyping—a

method of the Rapid Application Development (RAD) approach. The SDLC process is more

methodical and better structured and Prototyping requires a higher level of database expertise

(Hoffer, at al., p.48). One would suppose that the SDLC process should be given more

consideration especially in business curricula for at least two reasons. First, at the learning time,

the students are typically beginners. Second, after graduation they are more likely to become

domain rather than database experts and thus they may have more opportunities to participate in

database design activities rather than in database application development duties.

OC15065

REFERENCES

Adamski, J. J., Finnegan. K. T. (2011). New Perspectives on Microsoft Access 2010, Brief.

Boston: Course Technology - Cengage Learning.

Elmasri, R., Navathe, S. B. (2004). Fundamentals of Database Systems. Boston: Pearson /

Addison Wesley.

Harkins, S. (2004). Define relationships between database tables. TechRepublic. Retrieved

from: http://www.techrepublic.com/article/define-relationships-between-database-tables/

Hoffer, J. A, Prescott, M. B., McFadden, F. R. (2005). Modern Database Management, Seventh

Edition. Upper Saddle River, New Jersey: Pearson - Prentice Hall.

Letkowski, J. (2014). Doing database design with MySQL. Journal of Technology Research.

ISSN Online: 1941-3416 (http://www.aabri.com/jtr.html) Volume 6.

MS Access - Relationship (2014). Create, edit or delete a relationship. Retrieved from:

https://support.office.com/en-in/article/Create-edit-or-delete-a-relationship-dfa453a7-

0b6d-4c34-a128-fdebc7e686af

MS Access - Guide (2014). Guide to table relationships. Retrieved from:

https://support.office.com/en-in/article/Guide-to-table-relationships-30446197-4fbe-

457b-b992-2f6fb812b58f

Naiburg, E.J., Maksimchuk, R. J. (2001). UML for Database Design. Boston: Addison Wesley.

Poatsy, M. N., Krebs, C., Cameron, E., Williams, J., Grauer, R.T. (2014). Exploring: Microsoft

Access 2013, Comprehensive. Boston: Pearson Education, Inc.

Silberschatz, A., Korth, H. F., Sudarshan S. (2001), Database System Concepts. Boston:

Osborne/McGraw-Hill.

OC15065

APPENDIX

Figure 1. The basic components (entities) of the data model. A new table is created using the New

Table tool.

Figure 2. Connecting entity (table) Order with Customer. A foreign key, Customer_cid, is added

automatically to table Order.

OC15065

Figure 3. Resolving a Many-to-Many relationship. The ‘n:m’ tool connects entities Product and

Order.

Figure 4. A data model (EERD) of a product ordering system.

OC15065

Figure 5. Executing SQL- Create Table statement in a Data Definition panel, in Access.

Figure 6. The Relationship diagram of the database in Access.

OC15065

Figure 7. Defining table PurchaseOrder in Access.

Figure 8. The initial phase of developing a Relationships diagram in Access (a collection of

unlinked tables).

OC15065

Figure 9. Defining a relationship between database entities (tables) and enforcing the

referential integrity in Access.

