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Abstract 

Design, development and explorations of databases are popular topics covered in introductory 

courses taught at business schools. Microsoft Access is the most popular software used in those 

courses. Despite quite high complexity of Access, it is considered to be one of the most friendly 

database programs for beginners. A typical Access textbook teaches students first how to design 

and build databases. Next the students are exposed to forms, reports and queries. Advanced 

courses also delve into applications of modules and macros. In many database design situations, 

separation of a logical data model from its physical implementation is necessary. Nontechnical, 

subject-matter, experts and end-users can better understand the logical data model and thus they 

can help improve the model’s structure. This paper focuses on the database design phase. It 

shows a database design cases implemented in MySQL Workbench and in Microsoft Access. It 

also attempts to expose some difficulties and anomalies that may be encountered when using 

exclusively Microsoft Access.  
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DATABASE DESIGN PROCESS 

A typical database design process involves requirement analysis, conceptual (high level) 

design, and logical design—all leading to a physical design (Elmasri, at al., 2004, p. 51). The 

final logical data model should be specific enough in order to be mapped onto a physical 

database. As shown, for example, in (Letkowski, 2014), a data model—developed as an 

Enhanced Entity Relationship Diagram (EERD) in MySQL Workbench—can be automatically 

transformed into a physical design (database schema). Such a model includes a complete set of 

entities, attributes, key, relationships, cardinality and participation constraints that are necessary 

to accurately define a physical database (Silberschatz, at al., 2001, p. 27-37).  

Building a data model (EERD), using systems like MySQL Workbench, depends more on 

the subject-matter (domain) expertise than on the database skills. A subject-matter expert, who 

understands simple concepts of an entity (or class) and relationship can decidedly contribute to 

development of the data model. The following example shows a simulated scenario1 of the 

database design process with two participants: a domain expert (a sales manager, “Mark”) and 

database expert (a database administrator, “Debbie”). 

Mark: “I have been managing my sales for quite some time, using a phone and spreadsheet 

based ordering system. Recently, I have read some interesting articles about how my job can be 

improved by switching to a Web based system.” 

Debbie: “You understand that a Web system requires a multiuser and concurrent access to your 

data! Thus you can’t use your spreadsheet program. You would have to move to a database 

solution.” 

Mark: “Yes, I have read about that too.  Can you help me with designing a database? I’d like to 

see, for example, how basic information about customers, orders and products can be stored in 

the database.” 

Debbie: “Absolutely! Could you briefly explain how your system works? At this stage, let’s us 

focus on capturing and modeling information about orders.” 

Mark: “It is quite simple. We maintain a list of customers and products. Our customers place 

orders from time to time. We make sure that each order belongs to one and only one customer. 

The orders include some of our products—mainly small pieces of furniture (desks, chairs, 

shelves, etc.). Each product may be part of many orders.” 

Debbie: “I get it! Would you agree that your basic data entity sets (or object sets) are: Customer, 

Order and Product? 

                                                 
1 This scenario is loosely based on the Pine Valley Furniture case presented in (Hoffer, at al., 2005 p. 63-70). 



OC15065 

 

Mark: “Indeed they are! As a matter of fact they are already maintained in our current system as 

spreadsheet lists. Our customers are mainly businesses so we store ‘name’, ‘addresses’, contact 

information (‘phone’, ‘fax’, and ‘email’). Our orders includes ‘order date’ and reference to the 

customers who placed them (‘cid’). Finally, our products are characterized using such properties 

as ‘description’, ‘finish’, ‘unit price’, and ‘quantity on hand’. ” 

Debbie: “Great! You can also say that they (entity sets) are organized as tables. If so, they will 

be organized in a database in almost the same way—as database tables. We have to make sure 

that all rows in the tables are unique. To this end, for each table, we will create an identifier that, 

as you probably know, is referred to as a Primary Key (PK).”  

Mark: “I thought it would be much harder. In fact, we use integers to identify particular rows in 

the spreadsheet tables so we could easily look up relevant data, for example, when generating 

invoices. Our identifiers are: ‘cid’ (customer ID), ‘poid’ (Order ID), and ‘pid’ (Product ID).” 

Debbie: “Outstanding! Indeed, a spreadsheet lookup procedure comes very close to what we 

refer to in a database as a relationship. Later, in the database, you will be able to generate 

invoices by just using relationships, speaking of which, you have already mentioned the most 

important ones. Let me formalize them, using already established entity sets, as:  

  <Customer(1) – places – Order(1..n)> 

  <Order(0..n) – includes – Product(1..n)> “ 

Mark: “I kind of get it but not entirely. 

Debbie: “The first relationships is of type ‘one-to-many’.  As you mentioned, a customer may 

place one or many orders (1..n). In the same time, each order belongs to one (1) and only one 

customer. The second relationship is of type ‘many-to-many’. One order may include many 

products (1..n) and one product may be part of zero or many orders (0..n). These entities and 

relationships plus the attributes you mentioned above are all we need to construct a data model—

the so called Entity Relationship Diagram (ERD). I will show you how to do it, using the 2014 

version of MySQL Workbench2. The first step is to define the basic entities: Customer, Order 

and Product. Start MySQL workbench, create a new EERD model and, using the Table tool add 

the three entities, providing their names and attributes. Make sure that each entity has its own PK 

(Primary Key). Figure 1 shows the resulting diagram. Notice that, contrary to a spreadsheet 

implementation, each of the attributes must have appropriate type. The generic types (INT, 

FLOAT, DATETIME) are obvious. VARCHAR and CHAR stand for text types. The former 

speciffies the maximum size (capacity) and the latter—the exact size. Next, the relationships 

between the entities must be defined. They are a reflection of business. The Customer - Order 

relationship is created, using a Non-Identifying, One-To-Many relationship (1:n) by and 

                                                 
2 A complete (detail) procedure for developing a data model (EERD), using MySQL Workbench is shown in 

(Letkowski, 2014). 
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connecting entity Order with entity Customer. A new attribute is added automatically to entity 

Order: Customer_cid (Figure 2).”  

Mark: “Why is the Non-Identifying Relationship used here? What does it mean? “ 

Debbie: “Both the entities (Customer and Order) are already identified by their primary keys 

(cid, and poid). The additional field, Customer_cid, added to entity Order does not uniquely 

identify any order. It simply points to the customers that ‘own’ the orders.” 

Mark: “It makes sense.  What about the new attribute, Customer_cid? It looks like a copy of the 

primary key ‘cid’ in entity (table) Customer. In our spreadsheet implementation we use a similar 

approach in order to be able to lookup customer information in our invoices.”  

Debbie: “Indeed it acts like a copy. Such an attribute is called a Foreign Key (FK). Its role is to 

make sure that each order ‘knows’ its owner. One can also say that each order matches (Harkins, 

2004) its customer. In addition, the database system should ensure that each value of this 

attribute is one of the values of the related primary key, ‘cid’ defined in table Customer. This 

kind of validation is referred to as Referential Integrity. It is also important to note that this new 

key, Customer_cid, is strictly connected to the relationship between entities Order and Customer. 

Removing the key will also remove the relationship (connection line) and vice versa.” It is very 

important to understand that a foreign key only exists in the context of a relationship. It is a 

property of an entity (table) whose instances (records) depend on or are spawn by an instance of 

the related entity. With respect to the Customer – Order relationship, a customer places (creates) 

one or more orders. Each order is ‘signed’ by one customer. This signature is represented by the 

foreign key.” 

Mark: “OK, I got it! The PK-FK pairs reflect particular relationship instances which arise from 

business operations (rules). I could say that the role of the Primary Key is to maintain the Entity 

Integrity and the role of the Foreign Key is to ensure the Referential Integrity.”  

Debbie: “Very important points! Unlike spreadsheets, databases help us maintain data integrity. 

Out next step is to take care of the second relationship (Order – Product). This time we will use a 

Many-to-Many Relationship tool (‘n:m’). There is only one version of this tool: the Identifying 

Relationship. When two entities are connect with this tool, a new entity is spawned as shown in 

Figure 3. This is a so called associative entity. It may not exist on its own. Both the entities, 

Order and Product, are needed for this new entity to exist. Its business role is to ‘know’ which 

product is part of which order. It is frequently described as an order detail, invoice line, or order 

line. We will use the latter (OrderLine) to name this new entity.”  

Mark: “This all sound reasonable. I can see that we are almost there. There is one extra piece of 

information missing. We should not forget to add the ‘order quantity’, or just ‘quantity’ to this 

new entity.” 
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Debbie: “Excellent! This is why domain experts should always participate in database design 

processes. Like nobody else, they know the business rules and can anticipate what information 

will be needed in order to perform all sorts of business operations and decisions. To wrap up our 

design, let us rename the new entity and new attributes. I would also recommend to rename 

entity Order to PurchaseOrder. Some systems, like MySQL, do not accept user defined names 

that coincide with reserved word (e.g. Order). Figure 4 shows the final version of the model. ”  

Mark: “So now, how do we convert this model into a ‘real’ database?” 

Debbie: “With MySQL, we can automatically generate the database structure or what it is 

known in the database ‘world’ as the database schema. This is why the model, we have just 

created, is called an ‘Enhanced’ Entity Relationship Diagram3.”  

DESIGNING A DATABASE IN ACCESS USING SQL  

 Using the data model, like the one shown in Figure 4, a database expert should be able to 

develop manually appropriate SQL - CREATE TABLE statements that would create the 

database schema. MySQL Workbench can generate such statements automatically from the 

EERD model4. The resulting statements are fully compatible the MySQL database system: 

CREATE TABLE IF NOT EXISTS `Customer` ( 
  `cid` INT NOT NULL, 
  `name` VARCHAR(100) NOT NULL, 
  `address` VARCHAR(100) NULL DEFAULT NULL, 
  `city` VARCHAR(40) NULL DEFAULT NULL, 
  `state` CHAR(2) NULL DEFAULT NULL, 
  `zip` VARCHAR(20) NULL DEFAULT NULL, 
  PRIMARY KEY (`cid`)); 
ENGINE = InnoDB; 
 
CREATE TABLE IF NOT EXISTS `Product` ( 
  `pid` INT NOT NULL, 
  `description` VARCHAR(200) NULL DEFAULT NULL, 
  `finish` VARCHAR(50) NULL DEFAULT NULL, 
  `unitPrice` FLOAT NULL DEFAULT NULL, 
  `onHand` INT NULL, 
  PRIMARY KEY (`pid`)) 
ENGINE = InnoDB; 
 
CREATE TABLE IF NOT EXISTS `PurchaseOrder` ( 
  `poid` INT NOT NULL, 
  `poDate` DATETIME NULL DEFAULT NULL, 
  `cid` INT NOT NULL, 
  PRIMARY KEY (`poid`), 
  CONSTRAINT `fk_Order_Customer` 
    FOREIGN KEY (`cid`) 
    REFERENCES `Customer` (`cid`) 
    ON DELETE NO ACTION 
    ON UPDATE NO ACTION) 
ENGINE = InnoDB; 
 

                                                 
3 The EERD examples, included in this paper, show the logical data model implemented in UML. Since many 

database developers also develop applications, using Object-Oriented language it is convenient for them to express 

the model, using the Object-Oriented design language—UML (Naiburg, Maksimchuk, 2001). 
4 It can be done by means of menu options (commands): Database + Forward Engineer (Letkowski 2014).  
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CREATE TABLE IF NOT EXISTS `OrderLine` ( 
  `pid` INT NOT NULL, 
  `poid` INT NOT NULL, 
  `quantity` INT NULL, 
  PRIMARY KEY (`pid`, `poid`), 
  CONSTRAINT `fk_Product_has_Order_Product1` 
    FOREIGN KEY (`pid`) 
    REFERENCES `Product` (`pid`) 
    ON DELETE NO ACTION 
    ON UPDATE NO ACTION, 
  CONSTRAINT `fk_Product_has_Order_Order1` 
    FOREIGN KEY (`poid`) 
    REFERENCES `PurchaseOrder` (`poid`) 
    ON DELETE NO ACTION 
    ON UPDATE NO ACTION) 
ENGINE = InnoDB; 
 

Microsoft Access can execute such statements but it does not accept the following 

tokens: ‘IF NOT EXISTS’, ‘ENGINE = InnoDB’, ‘DEFAULT NULL’, ‘ON DELETE NO 

ACTION’, and ‘ON UPDATE NO ACTION’. After removing these token in a text editor, the 

remaining SQL code can be executed in the SQL (Data Definition) panel of the Query 

environment in Access. Each of the create-table statements must be executed separately. Figure 5 

shows execution the last of the following SQL statements: 

CREATE TABLE `Customer` ( 
  `cid` INT NOT NULL, 
  `name` VARCHAR(100) NOT NULL, 
  `address` VARCHAR(100) NULL, 
  `city` VARCHAR(40) NULL, 
  `state` CHAR(2) NULL, 
  `zip` VARCHAR(20) NULL, 
  PRIMARY KEY (`cid`) 
); 

CREATE TABLE `Product` ( 
  `pid` INT NOT NULL, 
  `description` VARCHAR(200) NULL, 
  `finish` VARCHAR(50) NULL, 
  `unitPrice` FLOAT NULL, 
  `onHand` INT NULL, 
  PRIMARY KEY (`pid`) 
); 

CREATE TABLE `PurchaseOrder` ( 
  `poid` INT NOT NULL, 
  `poDate` DATETIME NULL, 
  `cid` INT NOT NULL, 
  PRIMARY KEY (`poid`), 
  CONSTRAINT `fk_Order_Customer` 
    FOREIGN KEY (`cid`) REFERENCES `Customer` (`cid`) 
); 

CREATE TABLE `OrderLine` ( 
  `pid` INT NOT NULL, 
  `poid` INT NOT NULL, 
  `quantity` INT NULL, 
  PRIMARY KEY (`pid`, `poid`), 
  CONSTRAINT `fk_Product_has_Order_Product1` 
    FOREIGN KEY (`pid`) REFERENCES `Product` (`pid`), 
  CONSTRAINT `fk_Product_has_Order_Order1` 
    FOREIGN KEY (`poid`) REFERENCES `PurchaseOrder` (`poid`) 
);  
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The resulting Relationships diagram (Figure 6) is similar to the original data model 

(Figure 4). Access shows all cardinality constraints but without the participation constraints. For 

example, according to the original model the participation of entity OrderLine in the OrderLine – 

Product relationship is optional. This detail is not revealed in Access. This relationship is shown 

in Access as <OrderLine(∞) – Product(1)> whereas in the original model it is defined as 

<OrderLine(0..n) – gets – Product(1)>. Symbols ‘∞’and ‘n’ both stand for ‘many’. 

Another interesting aspect of the Relationships diagram in Access is that the relationships 

are not firmly coupled with their foreign keys. For example, contrary to the MySQL Workbench 

model, removing a relationship does not remove the foreign key standing behind the relationship.  

Adding records to Access tables via SQL is somewhat challenging. Only one SQL-Insert 

statement can be executed at a time in the SQL–Query panel. A macro command is needed to run 

multiple SQL-Insert statements. The following VBA code will execute sequentially all SQL 

statements contained in a plain-text document, sql.txt, stored in directory C:\db: 

Sub BatchSQL() 
  Dim fileRef As Integer 
  Dim txtSqlStatements As String 
  Dim sqlStatmentList As Variant 
  Dim sqlStatement As Variant 
 
  fileRef = FreeFile() 
  Open "C:\db\sql.txt" For Input As #fileRef 
  txtSqlStatements = Input(LOF(fileRef), #fileRef) 
  Close fileRef 
  sqlStatmentList = Split(txtSqlStatements, ";") 
 
  On Error Resume Next 
  For Each sqlStatement In sqlStatmentList 
     CurrentDb.Execute sqlStatement 
  Next 
End Sub  

Having all the tables populated with data, Access is now ready for applications. The 

phone based ordering system can benefit from more friendly and reliable input forms. Relevant 

information can be quickly retrieved using queries. Finally, the management can benefit from 

periodically generated reports. However, these problems go beyond the scope of this paper. They 

are exhaustively addressed, for example, in (Adamski, at al., 2011) and (Poatsy, at al., 2014). 

 

DESIGNING A DATABASE IN ACCESS USING THE GUI  

 Teaching database concepts and applications in business curricula is typically driven by 

tutorial based instructions provided by popular textbooks like (Adamski, at al., 2011) or (Poatsy, 

at al., 2014), utilizing mainly the GUI environment of Microsoft Access.  

Students learn first how to build database tables. They are not exposed to design issues 

extensively. Typically, they are brought directly into physical databases, learning technical 

aspect of navigating in a maze of menus, toolbars, dialog panels, and other Windows widgets. 

For example, (Adamski, at al., 2011, p. AC1-AC48) starts with Tutorial 1, “Creating a 

Database”. The students are introduced to basic database terminology, including notion of 
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‘field’, ‘table’, ‘database’, ‘primary key’, ‘foreign key’, and ‘relationship’. They also learn in this 

tutorial how to develop a simple ‘query’, ‘form’, and ‘report’. The concept of a relationship is 

explained by means of the primary key and the foreign key. A similar approach is shown in 

(Poatsy, at al., 2014, p. 83-140). The students first learn how to use an existing database by 

performing simple sorting and filtering operations, next they are introduced to relational database 

issues where relationships are explained again, using the primary and foreign keys.  

It is beyond the scope of this paper to show all details of the database development 

process performed with the Graphical User- Interface (GUI) in Access. (Adamski, at al., 2011) 

and (Poatsy, at al., 2014) do it thoroughly. Additional instructive materials can also be retrieved 

directly from Microsoft (MS Access – Guide, 2014), (MS Access – Relationship, 2014). 

However it is important to notice that the Access-GUI based process is not entirely consistent 

with the common system development process. This process, as shown in the previous section 

(DESIGNING A DATABASE IN ACCESS USING SQL), adheres to the principles and 

structure of the system development life cycle (SDLC) involving a sequence of tasks such as 

(Hoffer, at al., p.46): 

1. Identification 

2. Initiation and Planning 

3. Analysis 

4. Logical Design 

5. Physical Design 

6. Implementation 

7. Maintenance 

In Access, steps 4 and 5 are intertwined or somewhat reversed. Given a fully developed 

logical data model for a relational database should include both the entity and referential 

integrity features, as shown, for example, in (Figure 4), such a model can’t be developed in 

Access without first building a physical database. More over this model must (up front) include 

all necessary foreign keys. Figure 7 shows a ‘Design View’ for table PurchaseOrder. The 

pid and poid fields play two roles. They define both the primary key of the table and the 

foreign keys, linking this table to tables Product and PurchaseOrder, respectively. At this 

stage, this table definition is equivalent to the following SQL statement: 

CREATE TABLE `OrderLine` ( 
  `pid` INT NOT NULL, 
  `poid` INT NOT NULL, 
  `quantity` INT NULL, 
  PRIMARY KEY (`pid`, `poid`) 
); 

Moreover, the foreign keys, pid and poid, kind of exist but they are not formally 

acknowledged or marked up as such.  By contrast, the MySQL Workbench design (Figure 4) 

shows the PurchaseOrder entity with all its bells and whistles, identifying explicitly the 
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relationships and producing a physical table that is fully compliant with both the entity and 

referential integrity rules: 

CREATE TABLE `OrderLine` ( 
  `pid` INT NOT NULL, 
  `poid` INT NOT NULL, 
  `quantity` INT NULL, 
  PRIMARY KEY (`pid`, `poid`), 
  CONSTRAINT `fk_Product_has_Order_Product1` 
    FOREIGN KEY (`pid`) REFERENCES `Product` (`pid`), 
  CONSTRAINT `fk_Product_has_Order_Order1` 
    FOREIGN KEY (`poid`) REFERENCES `PurchaseOrder` (`poid`) 
);  

In order to bring this and other tables to the same status in Access, a ‘Relationships’ diagram 

must be completed. Figure 8 shows an initial diagram with all the database [physical] tables 

included. For the foreign keys to become the first class citizens, they must be linked with their 

respective primary keys. Figure 9 shows the final phase for completing the logical and physical 

design. The primary key, pid, of the Product table is dragged-and-dropped onto (linked to) 

the foreign key, pid, of the OrderLine table and the ‘Enforce Referential Integrity’ option is 

checked. All other relationships are defined in a similar way. The database is ready for 

application development (queries, forms, reports, etc.).  

CONCLUSIONS 

The entire GUI based database design process leads to the same result as the MySQL 

Workbench one (Figures 6 and 9). However, it is important to note a subtle difference between 

these two ways. The EER diagram tool of MySQL Workbench uses relationships to generate 

foreign keys. It also is capable of generating associative entities when many-to-many 

relationships are being resolved. The resulting model is fully compliant with the entity and 

referential integrity constraints. On the other hand, the GUI tools in Access require a physical 

database that satisfies the entity integrity constraints. Finally, by developing the Relationships 

diagram, the database becomes 100% relational.  

An intriguing question remains. Should business students learn how to design databases 

according to the SDLC process? The current approach seems to be some sort of Prototyping—a 

method of the Rapid Application Development (RAD) approach. The SDLC process is more 

methodical and better structured and Prototyping requires a higher level of database expertise 

(Hoffer, at al., p.48). One would suppose that the SDLC process should be given more 

consideration especially in business curricula for at least two reasons. First, at the learning time, 

the students are typically beginners. Second, after graduation they are more likely to become 

domain rather than database experts and thus they may have more opportunities to participate in 

database design activities rather than in database application development duties.  
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APPENDIX 

 

Figure 1. The basic components (entities) of the data model. A new table is created using the New 

Table tool. 

 

Figure 2. Connecting entity (table) Order with Customer. A foreign key, Customer_cid,  is added 

automatically to table Order. 
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Figure 3. Resolving a Many-to-Many relationship. The ‘n:m’ tool connects entities Product and 

Order.  

 

Figure 4. A data model (EERD) of a product ordering system. 
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Figure 5. Executing SQL- Create Table statement in a Data Definition panel, in Access. 

 

 

Figure 6. The Relationship diagram of the database in Access. 
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Figure 7. Defining table PurchaseOrder in Access. 

 

 

Figure 8. The initial phase of developing a Relationships diagram in Access (a collection of 

unlinked tables). 
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Figure 9. Defining a relationship between database entities (tables) and enforcing the 

referential integrity in Access. 

 


