
SC15068

Learning problem solving with Excel, Access and MySQL

Jerzy Letkowski

Western New England University

Nicholas Letkowski

Independent Consultant

Abstract

Popular software applications taught in business curricula include spreadsheet and database

technologies. Typical settings for learning processes arrange spreadsheet driven problem solving

separately from database oriented problem solving. Still, many business problems can be solved,

using both the technologies. Arguably, exposing students concurrently to spreadsheet and

database solutions may contribute to quite effective learning reinforcement. This paper shows

how to solve a classic payroll-computing problem in a spreadsheet and in database systems. It is

inspired by successful classroom experience of problem solving done with the two technologies.

Solution examples, developed in Microsoft Excel, Access and in MySQL are presented and

discussed.

Keywords: Problem solving, business case, spreadsheet, database, business curriculum.

SC15068

LEARNING OBJECTIVES

 Problem solving is one of the most desirable skills expected from business graduates. For

example, at Western New England University, in an AACSB accredited Business program, the

number one and five objectives are “To solve business problems by thinking critically and

applying principles of effective decision making” and “To apply information technology

concepts and tools to support business problem-solving and decision-making”, respectively. One

of the first courses to address this objective is BIS 102, “Problem Solving with Business Tools”.

There are three areas in which this course addresses business problem solving: (1) spreadsheet

modeling, (2) database design and query development, and (3) business analytics. The latter is

explored using both the spreadsheet and database technologies.

 The learning case, presented in this paper, deals with a Human Resource (HR) problem of

computing gross salaries for hourly paid employees. Upon completion of this case, student are

expected to learn how to:

• model payroll data,

• integrate the data,

• compute weekly salaries.

These objectives can be accomplished using spreadsheet or database tools. Typically, the

contemporary textbooks, for example, (Adamski, 2011), (Gaskin, 2014), (Parsons, 2011),

(Poatsy, 2013), develop expertise for solving this problem in both a spreadsheet and in a

database. However the solution implementations are presented independently. Arguably,

presenting the implementations concurrently, side-by-side, is expected to contribute to better

understanding of the problem and its solution as well as to improved skills in utilizing both the

spreadsheet and database systems.

CASE PAYROLL - PROBLEM STATEMENT

A small business company, Sunny Energy, Inc. employs a few managers, assistants,

technical specialists, and production workers. The company has been handling its payroll in a

spreadsheet in a sort of primitive way, involving lots of manual operations. With the recent

expansion, the payroll assistant, Alice Ray, realized that the current system became very difficult

to manage, especially with respect to the production workers who get paid based on their hours

worked with overtime options. Salaries of other employees are relatively stable and

unchallenging. Alice had an idea to contact her former professor, Dr. Baran, who she

remembered from her Microcomputer Application class. Her boss, Mr. Bear, approved her idea

and she met with Dr. Baran. To make this story short, Dr. Baran recommended his best student,

Nick Bright to assist Alice with her problem solving. He only had one advice for Nick and Alice.

He said that they must develop more than one solution and for the most of it the solutions should

be data integrity friendly. Nick knew right away what his professor meant. He was sure that one

of the solutions would have to involve a database, for example Microsoft Access or MySQL. He

mentioned it to Alice, and she replied that she was not familiar with any database technology

SC15068

and, while she was willing to consider it, she asked if it were possible to first develop a working

prototype in Excel.

DATA MODELING

Whether spreadsheet or database is to be applied, one needs to specify the problem in a

more concise language. Wrapping it all up, the problem can be described, using simple SPO1

type statements:

• Production Worker belongs to a Department.

• Production Worker works Hours.

• Production Worker gets Weekly Pay.

Based on this high level design, one can identify a few related entities: Production Worker

(further referred to as Worker), Department, Hours (further referred to as TimeSheet), and

WeeklyPay.

 In a prototype solution, the entities (Department, Worker, TimeSheet, and

WeeklyPay) are described with minimal sets of their attributes:

• Department (d_id, title).

• Worker (w_id, d_id, firstName, lastName, hourlyPayRate).

• TimeSheet (ts_id, w_id, workDate, hoursWorked).

• WeeklyPay (wp_id, w_id, payYear, weekNumber, grossPay).

Other relevant details, used to manage these human resources can be easily added later.

A visual representation of the above design, can be shown, using an Entity Relationship

(ER) model or a Unified Modeling Language (UML) model. (Teorey at al., 2006, p. 9). MySQL

Workbench is a free but powerful tool that can be used to develop such diagrams (in both the ER

and UML format). Figure 1 shows an initial diagram, containing unrelated entities. Attributes

Worker.d_id, TimeSheet.w_id, and WeeklyPay.wp_id are not shown [explicitly] since

they are derived from the relationships between the entities. Figure 2 shows a complete diagram,

including entity relationships. A detail instruction about developing such diagrams is provided in

(Letkowski, 2015 A). Unfortunately, Access has limited functionality for designing databases

which is why the Payroll ER model is developed in MySQL Workbench (Letkowski, 2015 B).

SPREADSHEET IMPLEMENTATION

 Doing tables in Excel to process data entities is a straight forward task. One takes the

attribute names of an entity to create a table header and all detail data is entered in the attribute

columns below the header. Figure 3 shows two tables: Department and Worker. It is always a

1 SPO stands for Subject – Predicate – Object. RDF and its extension OWL are a formal implementations of such a

language. Interesting applications of these languages are presented in (Matheus, at al., 2005 and 2006).

SC15068

good idea to name tables in Excel. The tables are named in two ways, as Department, Worker

and _Department, _Worker, respectively. The former names refer to the whole tables,

including the headers, and the latter—only to the data rows. Depending on circumstances one

can use conveniently one name or the other. For example, while importing the tables to Access,

one would use the names referencing the entire tables (e.g. Department and Worker). When

applying Excel functions such as VLookup(), Index(), etc., one would use the names only

referencing the data rows (e.g. _Department and _Worker).

Figures 4 and 5 show fragments of an extended TimeSheet table. This table includes

one extra column (weekNumber & w_id), combining the week number (weekNumber) and

worker ID (w_id). The week number values are derived from the workDate values. This extra

column contains unique identifiers of the workers’ week records that will be used to retrieve

work hours for particular weeks and worker IDs. For example, a combination of week number 2

and worker ID 1 identifies all workdays of this week for this worker. The sum of all hours

worked, associated with weekNumber & w_id = “2-1”, represents the total number of hours

worked by worker 1 during the week 2 of the year. This extra column is built, using formula

=WEEKNUM(C2)&"-"&B2, being replicated throughout the entire column. Following the naming

pattern applied to the first two tables, this table is named as TimeSheet and _TimeSheet,

respectively. When importing this table to Access the column weekNumber & w_id should be

ignored.

The last table, WeeklyPay, is shown in Figure 6. The first column contains serial

numbers (IDs) of the Payroll transactions. The second column is a dynamic copy of the worker

ID column defined in the Worker table. The table also includes two intermediate columns

(hourlyPayRate and weekHours) that facilitate calculations of the gross pay values (in

column grossPay). The first of these two columns retrieves the hourly rate of pay from table

_Worker, using the workers ID (w_id). It is done by means of the following function:

=VLookup(B5,_Worker,5)2. Notice that 5 stands for the column number of the _Worker

table from which the hourly rate of pay is being retrieved. Recall that name _Worker refers just

to the data rows of the source table stored on sheet Worker. The second column, weekHours,

shows calculated weekly hours for the given week number (in cell E3) and worker ID (in cell

B5). It uses a conditional function, SumIf()3, whose first argument refers to column

weekNumber & w_id of the TimeSheet table to be matched by the second argument,

combining the week number and worker ID, followed by third argument, referencing the work

2 The VLookup() function is known for stirring fearful emotions among students even so it is extensively covered

by the popular spreadsheet textbooks (Gaskin, at al., 2014, p. 251-255), (Poatsy-Mulbery, at al., 2014, p. 184-

186), (Parsons, at al., 2011, p. EX388-394) . The 2013 edition of Excel offers an alternative to this function by

means of Relationships but it can only be explored within Pivot Tables.
3 The SumIf () function is also quite challenging. It takes a good visualization for the students to perfectly

understand how this function works. It is well documented and explained in the spreadsheet textbook mentioned

above, (Gaskin, at al., 2014, p. 481-482), (Poatsy-Mulbery, at al., 2014, p. 467-468), (Parsons, at al., 2011, p.

EX407-408).

SC15068

hours to be totaled:

 =SUMIF(TimeSheet!E2:E2593,"="&E3&"-"&B5,TimeSheet!D2:D603).

Notice that the way the second argument is constructed, is identical to the way the values in the

TimeSheet!E2:E2593 range (the first argument) are defined. This is absolutely

necessary in order to ensure consistency of the references and ultimately—the correctness of

calculations. The size of the third argument, TimeSheet!D2:D603, is expected to be the

same as that of the first one.

 The last column in the WeeklyPay table, grossPay, fulfills the main objective of this

whole application. It shows calculated gross weekly pay amounts. The formula used in this

column is based on the following payroll rule, taking into account the base pay and two types of

the overtime pay, if any:

()

()







>−⋅+⋅+⋅

≤<−⋅+⋅

≤⋅

=

60hif6010

60h40if2/40

40if

hrrhr

hrhr

hhr

p (i)

In order to simplify this rule, variable r and h are mapped from hourlyPayRate (defined in

table Worker) and hoursWorked (defined in table TimeSheet), respectively. In short, the

weekly gross pay is a straight product of the hourly pay rate and the number of hours worked for

those who worked during the whole week no more than 40 hours. For the hours above 40 and up

to 60, the workers get paid extra at 50% of the rate (r/2). Finally, those who worked more than

60 hours during the week get extra pay for 20 hours between 40 and 60 at the 50% of the rate

(r·20/2 = r·10) plus additional pay for hours above 60 at the 100% of the rate, r·(h-60).

Taking advantage of the Excel’s Max() function, the above formula can be implemented as:

=ROUND(C5*(D5+(MAX(D5,40)+MAX(D5,60)-100)/2),2)

This formula is replicated (copied/pasted) in the whole grossPay column. Interestingly, without

the two extra columns, hourlyPayRate and weekHours, this formula would become quite

monstrous:

=ROUND(VLOOKUP(B5,_Worker,5)*

(SUMIF(TimeSheet!E2:E2593,"="&E3&"-"&B5,

TimeSheet!D2:D603)+(MAX(SUMIF(TimeSheet!E2:E2593,"="&E3&"-

"&B5, TimeSheet!D2:D603),40)+MAX(SUMIF(TimeSheet!E2:E2593,

"="&E3&"-"&B5,TimeSheet!D2:D603),60)-100)/2),2)

It is customary to use intermediate cells in a spreadsheet application in order to simplify

formulas and make them more understandable and maintainable. This approach fall into a

framework of solving problems via a systematic decomposition.

 The spreadsheet solution, presented so far, is quite generic. It can be employed in

programs other than Excel (Google Sheets, Apache OpenOffice, etc.). Although the main

objective (to compute the weekly gross payroll) has been accomplished a few unresolved issues

SC15068

must be addressed and resolved before this solution can be applied. For example, one could ask:

what will happen next week? The dates (Beginning Date and End Date) will be changed, causing

the week number to change as well. The weekly payroll for the previous week will vanish, while

being overwritten by the new week’s results. A simple solution to this problem would be to

create a new worksheet that will accumulate sequentially all weekly outcomes processed so far.

However, an in-depth coverage of this and similar payroll management issues goes beyond the

scope of this paper. Needless to say, a database solution may shed some extra light at these

payroll maintenance problems.

DATABASE IMPLEMENTATION

 The first step in structuring a database solution is to create a database and add raw data.

Since the Excel tables, explored so far, already contain the raw data, it make sense to import the

data from the Excel workbook to an Access or MySQL database4. One has to be extra careful

when getting Excel tables that contain calculated columns. Such columns should be discarded.

The Access’s import and MySQL add-in’s export wizards provide an easy way to do it. Figure 7

shows fragments of the three tables (Department, Worker, and TimeSheet) imported from

the Excel workbook into an Access database. Notice that the first two tables were imported

entirely and the third one—partially. The weekNumber & w_id column of the TimeSheet

table, as a calculated column, was omitted. The database schema diagram is shown in Figure 8.

 Getting even basic data for a weekly payroll of a year is a quite complex task. It makes

sense to break the problem into smaller tasks, then complete that tasks and aggregate them into

the final solution. Such a problem solving process is shown below for both Access and MySQL.

Access Solution

 The first task is to get the right for the hours worked by each worker in the selected week

of the year. Figure 9 shows a query, fetching worker IDs and hours work for the selected period.

The SQL version of this query is as follows:

SELECT w_id, hoursWorked AS h
FROM TimeSheet
WHERE (((DatePart("ww",[workDate]))=[Week Number]) AND
((Year([workDate]))=[Payroll Year]));

Notice that function DatePart("ww",[workDate]) is used in this query in order to extract

the week number from each date. In Excel, function =WEEKNUM() was used. Access is not

equipped with such a function. Also notice that this query utilizes two parameters, [Week

Number] and [Payroll Year]. Values of these parameters are entered at the query’s run

time. This query is saved as view WorkersAndHoursWnAndY (workers and hours for week

number and year).

4 Importing data from Excel into Access is a pretty straight-forward task. Many common textbooks provide

excellent set of examples (Adamski, at al., 2011, p. AC76-79), (Poatsy-Krebs, at al., 2014, p. 157-160). The latest

MySQL setup program can also install the MySQL for Excel Database add-in that can be used to import data from

Excel to MySQL databases (MySQL, 2015).

SC15068

 The output of the first query (Figure 10) is used as input for the second query, whose

purpose is to aggregate (subtotal) hours worked for each of the workers (Figure 11). The SQL

statement for this query is as follows:

SELECT w_id, Sum(h) AS totalHours
FROM WorkersAndHoursWnAndY
GROUP BY w_id;

This is a classic subtotal query. It is saved as view WorkersAndTotalHoursWnAndY (workers

and total hours for week number and year). Its output is shown in Figure 12.

 Going with baby steps, the job of the third query is to collect all the data needed for the

final weekly pay report, except of the grossPay column (Figure 13):

SELECT Department.d_id, Department.name, Worker.w_id, Worker.firstName,
 Worker.lastName, Worker.hourlyPayRate AS r,
 WorkersAndTotalHoursWnAndY.totalHours AS h
FROM Department INNER JOIN
 (Worker INNER JOIN WorkersAndTotalHoursWnAndY ON Worker.w_id =
 WorkersAndTotalHoursWnAndY.w_id)
ON Department.d_id = Worker.d_id;

This is a typical INNER JOIN query, combining related data from two tables, Department,

Worker, and one view, WorkersAndTotalHoursWnAndY. The name of this query (view) is

PDWY. Figure 14 shows its output.

 The touch-down for the run to the Weekly Gross Payroll solution is represented by the

last query, PayrollForWnY (Figure 15). It adds just one calculated column that computes the

weekly gross pay based on the rule (i), taking into account the base pay and the over-time pay, if

any:

SELECT PDWY.d_id, PDWY.name, PDWY.w_id, PDWY.firstName, PDWY.lastName,
 PDWY.r AS hourlyRate, PDWY.h AS weeklyHours,
 Round([r]*([h]+(IIf([h]>40,[h],40)+IIf([h]>60,[h],60)-100)/2),2)
 AS grossPay FROM PDWY
ORDER BY PDWY.w_id;

The grossPay column is defined in a similar way to the Excel’s corresponding column. There

is one important difference thou. One may not use the Max() function in this context as Access

and other database systems use Max() as an aggregate function. Instead an IIF() function is

used. It is equivalent to Excel’s IF() function. In this case, it picks up the greater of two values.

The output of this query (Figure 16) makes up the basis for the Weekly Payroll report.

 Looking at this solution, Alice realized that it is actually not that difficult. She would

probably quickly learn how to live with it. Nick uttered that a MYSQL solution is also

interesting.

 MySQL Solution

 MySQL implements parametric queries either through global variables or, more

commonly, via stored procedures. The following SQL code shows how to gradually develop a

stored procedure that will produce the same output as the last Access query (PayrollForWnY).

SC15068

First, prototype views (for specific dates), solving sub-problems, are developed, next all the

views are aggregated into a single query which, finally, is used to develop the stored procedure.

 In MySQL, the query language is closer to the SQL standard and, in many aspects, it is

more flexible and powerful than Access query tools. In particular, it is easier to produce queries

for grouped data (e.g. subtotals). The following is the first query (view) that returns worker IDs

along with their hourly pay rates and total hours between tow dates. Nick decided to show a

different, more flexible, approach to handling dates. Instead of using year and week number, he

chose two consecutive dates. This way, it will be easy to produce a Payroll report for any period.

The first query/view, WHR, uses the dates, '2015-03-23' and '2015-03-29', that are equivalent

to week number 13 and year 2015.

-- Query 1: WHR
CREATE OR REPLACE VIEW WHR AS
SELECT w_id, hourlyPayRate AS r, Sum(hoursWorked) AS h
FROM Worker INNER JOIN TimeSheet USING(w_id)
WHERE workDate BETWEEN '2015-03-23' AND '2015-03-29'
GROUP BY w_id;
SELECT * FROM WHR;

By the way, the same output would be produced with the WHERE clause, using the week number

and year:

WHERE WEEK(workDate,3)=13 AND YEAR(workDate)=2015

Notice that the second argument of the WEEK() function defines mode 3 which sets the first day

of the week to Monday and starts week numbers with 1.

 The second view, WHRP, adds the grossPay column and it uses the first view. Notice

that the way the periodic gross pay is calculated is similar to that in Access. MySQL uses the

IF() function (instead of the IIF() one):

-- Query 2: WHRP
CREATE OR REPLACE VIEW WHRP AS
SELECT w_id, r, h,
 Round(r*(h+(If(h>40,h,40)+If(h>60,h,60)-100)/2),2) AS grossPay
FROM WHR;
SELECT * FROM WHRP;

 The third and last query includes other details (departmental and personal). This is a

typical INNER JOIN query:

-- Query 3: DWHRP
CREATE OR REPLACE VIEW DWHRP AS
SELECT Department.d_id, Department.name, Worker.w_id, Worker.firstName,
 Worker.lastName, WHRP.r AS hourlyRate, WHRP.h AS hoursWorked, WHRP.grossPay
FROM Department INNER JOIN Worker USING(d_id) INNER JOIN WHRP USING(w_id)
ORDER BY Worker.w_id;
SELECT * FROM DWHRP;

The process of aggregating the views is simple in principle but complicated in execution.

One replaces the names of the views with SQL code (SELECT statements) that define the views.

SQL views are referred to virtual tables. After the view name is replaced with its SELECT

statement, the latter becomes a sub-query. It is important to remember that each subquery must

SC15068

be enclosed in parentheses and be assigned an alias. Thus, in the second query, the FROM clause

it rewritten, replacing name WHR with the query stranding behind it, resulting in:

SELECT w_id, r, h,
 Round(r*(h+(If(h>40,h,40)+If(h>60,h,60)-100)/2),2) AS grossPay
FROM (SELECT w_id, hourlyPayRate AS r, Sum(hoursWorked) AS h
FROM Worker INNER JOIN TimeSheet USING(w_id) WHERE workDate BETWEEN '2015-03-
23' AND '2015-03-29' GROUP BY w_id) WHR;

Using the above query as replacement of view name WHRP in Query 3 (DWHRP) yields this

query:

SELECT Department.d_id, Department.name, Worker.w_id, Worker.firstName,
 Worker.lastName, WHRP.r AS hourlyRate, WHRP.h AS hoursWorked, WHRP.grossPay
FROM Department INNER JOIN Worker USING(d_id)
 INNER JOIN (SELECT w_id, r, h,
 Round(r*(h+(If(h>40,h,40)+If(h>60,h,60)-100)/2),2) AS grossPay
 FROM (SELECT w_id, hourlyPayRate AS r, Sum(hoursWorked) AS h
 FROM Worker INNER JOIN TimeSheet USING(w_id)
 WHERE workDate BETWEEN '2015-03-23' AND '2015-03-29'
 GROUP BY w_id) WHR) AS WHRP
 USING(w_id)
ORDER BY Worker.w_id;

 The final step is to inject this complicated query into a stored procedure. This will enable

replacement of the specific dates with parameters (p_startDate and p_endDate):

-- Stored Procedure:
DROP PROCEDURE IF EXISTS WeeklyPayroll;
DELIMITER |
CREATE PROCEDURE WeeklyPayroll(IN p_startDate DATETIME, IN p_endDate
DATETIME)
BEGIN
SELECT Department.d_id, Department.name, Worker.w_id, Worker.firstName,

 Worker.lastName, WHRP.r AS hourlyRate, WHRP.h AS hoursWorked, WHRP.grossPay

FROM Department INNER JOIN Worker USING(d_id)

 INNER JOIN (SELECT w_id, r, h,

 Round(r*(h+(If(h>40,h,40)+If(h>60,h,60)-100)/2),2) AS grossPay

 FROM (SELECT w_id, hourlyPayRate AS r, Sum(hoursWorked) AS h

 FROM Worker INNER JOIN TimeSheet USING(w_id)

 WHERE workDate BETWEEN p_startDate AND p_endDate
 GROUP BY w_id) WHR) AS WHRP

 USING(w_id)

ORDER BY Worker.w_id;

END
|
DELIMITER ;
CALL WeeklyPayroll('2015-03-23', '2015-03-29');

This procedure can be executed in any MySQL client-console or by an application program

written in Java, PHP, etc.

 Now, having three different solutions to the payroll problem it is a decision time to

choose the most efficient and convenient one. It is not an easy decision. One has to take all

technological and organizational expectations, restrictions and requirements.

SC15068

CONCLUSION

 Allice took time to review and analyze both the spreadsheet and database solutions.

While she noticed that the solutions represent significant improvement compared to her current

system, she also realized that more work is needed in order to further improve her payroll

generating process. She looked at additional requirements of the payroll system and, after

exhaustive discussion with Nick, she concluded that it would be not too difficult to satisfy them

by extending the current spreadsheet and/or database tables. At this point, Alice would prefer to

stay with the spreadsheet solution. After all, she knows well how to deal with Excel. In spite of

Nick’s recommendation, she was not ready for a database solution. Still, there was one peculiar

piece of her puzzle that bothered her and she did know how to handle. There seemed to be not an

easy fix for managing updates of the hourly pay rates of the workers. She arranged for another

meeting with Nick in order to find out how to handle this predicament.

 During the meeting, after a few minutes of silence, only interrupted by strange noises

coming for Nick’s brain, Nick realized that they have made a serious design error. This issue of

dynamic pay rate should have been resolved when they were structuring the logical data model.

Obviously, the hourly rate of pay should be considered to be an entity on its own rather than a

simple property of entity Worker. For every instance of Worker there should be at least one

instance of the pay rate. When a worker gets a raise, the new rate should be recorded but the old

ones should not be forgotten. Taking this requirement into account, the old ER diagram was

modified as shown in Figure 17. Nick quickly updated the database in MySQL. The data changes

are shown in Figure 18.

 Using a similar process of decomposition and aggregation, Alice and Nick developed the

following SQL code:

-- Query 1: EffectiveDate
CREATE OR REPLACE VIEW EffectiveDate AS
SELECT w_id, MAX(effDate) as theDate
FROM PayRate
WHERE effDate <= '2015-03-23'
GROUP BY w_id;
SELECT * FROM EffectiveDate;

This query determines the dates of the most recent hourly rate updates for each worker that were

made before or on the given date (here '2015-03-23').

-- Query 2: EffectiveRate
CREATE OR REPLACE VIEW EffectiveRate AS
SELECT w_id, r
FROM PayRate JOIN EffectiveDate Using(w_id)
WHERE effDate = theDate
ORDER BY w_id;
SELECT * FROM EffectiveRate;

Query 2 pulls the up-to-date hourly rates for each worker.

-- Query 3: EffectiveHours
CREATE OR REPLACE VIEW EffectiveHours AS
SELECT w_id, Sum(hoursWorked) AS h
FROM TimeSheet

SC15068

WHERE workDate BETWEEN '2015-03-23' AND '2015-03-29'
GROUP BY w_id;
SELECT * FROM EffectiveHours;

This query gets the total hours worked for each worker between the given dates.

-- Query 4: EffectiveRateHours
CREATE OR REPLACE VIEW EffectiveRateHours AS
SELECT w_id, r, h
FROM EffectiveRate JOIN EffectiveHours USING (w_id);
SELECT * FROM EffectiveRateHours;

Query 4 merges the outcomes of queries EffectiveRate and EffectiveHours, providing

intermediate result similar to that of view WHRP.

-- Query 5: EffectivePayroll
CREATE OR REPLACE VIEW EffectivePayroll AS
SELECT d_id, name, w_id, firstName, lastName, r as hourlyRate, h as
totalHours, Round(r*(h+(If(h>40,h,40)+If(h>60,h,60)-100)/2),2) AS grossPay
FROM Department JOIN Worker USING (d_id) JOIN EffectiveRateHours USING
(w_id);
SELECT * FROM EffectivePayroll;

This final query/view does the similar job as the previous query DWHRP. As shown in the

previous section, the queries/view can be aggregated into just one big query embedded in a

stored procedure, for example:

-- Stored Procedure WeeklyPayroll:
DROP PROCEDURE IF EXISTS WeeklyPayroll;
DELIMITER |
CREATE PROCEDURE WeeklyPayroll(IN p_startDate DATETIME,
 IN p_endDate DATETIME)
BEGIN
 SELECT d_id, name, w_id, firstName, lastName, ERH.r as hourlyRate,
 ERH.h as totalHours,
 Round(r*(h+(If(h>40,h,40)+If(h>60,h,60)-100)/2),2) AS grossPay
 FROM Department JOIN Worker USING (d_id) JOIN
 (SELECT w_id, r, h
 FROM (SELECT w_id, r
 FROM PayRate JOIN
 (SELECT w_id, MAX(effDate) as theDate
 FROM PayRate
 WHERE effDate <= p_startDate
 GROUP BY w_id) AS ED
 USING(w_id)
 WHERE effDate = theDate) AS ER JOIN
 (SELECT w_id, Sum(hoursWorked) AS h
 FROM TimeSheet
 WHERE workDate BETWEEN p_startDate AND p_endDate
 GROUP BY w_id) AS EH
 USING (w_id)) AS ERH
 USING (w_id)
 ORDER BY w_id;
END
|
DELIMITER ;
CALL WeeklyPayroll('2015-03-23', '2015-03-29');

Figure 19 shows the store procedure’s output.

SC15068

 Similar modifications can be done to the Excel and Access applications. More

challenging would be getting the Excel application to account for the dynamic pay rates. These

challenges are left to be considered as exercises.

 In summary, before accepting a software solution, one should explore different options

and choose the one that satisfies the organizational goals as well as human and technological

constraints. Off-the-shelf software alternatives should also be considered.

 Regarding students’ learning issues, a situation experienced by the author may be of

interest. In the course, mentioned in the first section, the student first attempted to learn Access,

including fundamentals of database design, development and query applications. Initially, they

showed not too much enthusiasm and many of them could not wait to jump onto Excel. The

initial chapters of Excel went smoothly and all the students were quite happy. Significant

difficulties surfaced when exploring spreadsheet lists, tables, aggregate and conditional

functions, what-if analysis and pivot tables. However, it was not until the final exam review. The

students were exposed to problems like the one presented in this paper, when a miracle

happened. They were given side-by-side examples of problem solutions in Excel and Access.

Kind of surprising, they started showing more enthusiasm towards Access. Moreover, when

taking an optional, final-exam-exemption test, on average, the students received better grades for

the Access part than for the Excel part.

SC15068

REFERENCES

Adamski, J. J., Finnegan. K. T. (2011). New Perspectives on Microsoft Access 2010, Brief.

Boston: Course Technology - Cengage Learning.

Gaskin, S., Vargas, A., Geoghan, D. (2014). GO! With Microsoft® Excel 2013 – Comprehensive.

Boston: Pearson Education, Inc. as Prentice Hall.

Letkowski, J. (2015 A). Doing database design with MySQL. Journal of Technology Research.

ISSN Online: 1941-3416 (http://www.aabri.com/jtr.html,

http://www.aabri.com/manuscripts/142002.pdf) Volume 6.

Letkowski, J. (2015 B). Challenges in database design with Microsoft Access. Academic and

Business Research Institute Conference, Orlando 2015, January 1-3

(http://www.aabri.com/OCProceed2015.html, OC2015ES,

http://www.aabri.com/OC2015Manuscripts/OC15065.pdf).

Letkowski, J. (2015 C) Spreadsheet and database resources for this paper. Retrieved from:

http://letkowski.us/pub/conference/aabri/2015/savannah/

Matheus C., Baclawski K., Kokar M., Letkowski J. (2005) Using SWRL and OWL to Capture

Domain Knowledge for a Situation Awareness Application Applied to a Supply Logistics

Scenario. In Rules and Rule Markup Languages for the Semantic Web First International

Conference, A. Adi, S. Stoutenburg (Ed), pages 130-144. Lecture Notes in Computer

Science 3791:130-144. Springer-Verlag. (November 10-12, 2005).

Matheus C., Dionne B., Parent D., Baclawski K., Kokar, M. (2006) BaseVISor: A Forward-

Chaining Inference Engine Optimized for RDF/OWL Triples. The 5th International

Semantic Web Conference, Athens, GA, USA.

MySQL (2015). MySQL For Excel Database Add-in. Retrieved from:

http://dev.mysql.com/doc/mysql-for-excel/en/index.html

Parsons, J. J., Oja, D., Ageloff, R., Carey, P. (2011). New Perspective on Microsoft® Excel®

2010. Boston: Course Technology, Cengage Learning.

Poatsy, M. N., Mulbery, K., Davidson, J., Lawson, R., Grauer, R.T. (2014). Exploring: Microsoft

Excel 2013, Comprehensive. Boston: Pearson Education, Inc.

Poatsy, M. N., Krebs, C., Cameron, E., Williams, J., Grauer, R.T. (2014). Exploring: Microsoft

Access 2013, Comprehensive. Boston: Pearson Education, Inc.

Teorey, T., Lightstone, S, Nadeau, T. (2006). Database Modeling & Design: Logical Design. San

Francisco: Elsevier, Inc. as Morgan Kaufman Publishers.

Wikipedia-MySQLW (2014). MySQL Workbench.

Retrieved from: https://en.wikipedia.org/wiki/MySQL_Workbench

SC15068

APPENDIX

Figure 1. Data entities and their attributes.

Figure 2. A complete ERD (Entity Relationship Diagram).

Figure 3 Entities Department and Worker implemented in Excel as free tables stored on two separate

sheets.

SC15068

Figure 4. The top fragment of the TimeSheet table. Notice a new worker (w_id=10)

hired on Jan-06, 2015.

Figure 5. A fragment of the TimeSheet table with the hoursWorked data provided up to March-28,

2015. During the week number 13, some of the workers also worked on Saturday (March 28, 2015).

SC15068

Figure 6. Entity WeeklyPay implemented in Excel as free table. The two additional columns,

hourlyPayRate and weekHours are incorporated here in order to simplify the formula for the

grossPay.

Figure 7. Access tables for the payroll application.

SC15068

Figure 8. The database schema for the payroll application.

Figure 9. The first query, WorkersAndHoursWnAndY, providing the hours worked for all the workers

within a given Year and Week Number. [Week Number] and [Payroll Year] are parameters of this query.

Figure 10. A fragment of the WorkersAndHoursWnAndY query’s output.

SC15068

Figure 11. An aggregate query, WorkersAndTotalHoursWnAndY, to calculate hours worked subtotals for

each of the workers.

Figure 12 The WorkersAndTotalHoursWnAndY query’s output (the total hours worked by the workers 1,

2, …, 5, during week number 13 of year 2015.

Figure 13. A query, PWDY, to merge essential data necessary to generate the weekly payroll (only the gross

pay column is missing).

SC15068

Figure 14. The PDWY query’s output. It show all columns necessary for the weekly [gross] payroll, except for

the gross pay column.

Figure 15. The final query, PayrollForWnY, to compute the weekly gross payroll.

Figure 16. The PayrollForWnY query’s output (the final result).

SC15068

Figure 17. The updated ER diagram.

Figure 18. A new table, PayRate, and modified table Worker (without column hourlyPayRate).

Figure 19. The result of calling the WeeklyPay stored procedure for week 13 of year 2015 (between dates '2015-

03-23' and '2015-03-29').

