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ABSTRACT 

 

                In this paper the authors compare the magnitudes of the realized volatility estimators 

obtained from the two methods using real intra-daily high frequency return data. These two 

realized volatility estimators are non-parametric, model-free approaches. One estimator is the 

conventional realized volatility (RV) estimator by aggregating the squared returns extracted 

from the intra-daily high frequency return data set in each of the trading days, and the other 

estimator is the two-scale realized volatility estimator (TSRV) obtained using sub-grids 

sampling, averaging, and bias correction in intra-daily returns data in each trading day. 

Further, the statistical properties of these two realized volatility estimators are explored. The 

results show that, depending on different sub-intervals designated in a trading day, the RV 

estimators exhibit very different magnitudes. On the other hand, the TSRV estimator shows 

very stable magnitudes when the numbers of the sub-grids are big enough. In addition, these 

two realized volatility estimators exhibit a fractionally integration, or so-called long memory 

property. The results suggest that the length of a subinterval for a RV estimator and the 

number of the sub-grids for a TSRV estimator impose remarkable impacts on the estimation 

of daily realized volatility when intra-daily high frequency return data are used. 

 

Key Words: Realized return volatility, intradaily high frequency data, GPH estimator, long 

memory, microstructure noise 
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INTRODUCTION 

 

Return volatility, gauging the fluctuation of a financial asset’s returns, is widely used 

in portfolio construction, option’s pricing and trading, volatility-related derivatives’ trading, 

and risk management. As such, researchers have made significant efforts in modeling the 

return volatility. Many different methodologies and theories have been developed in the past 

decades. Using low frequency daily return data, Parkinson (1980), Garman and Klass (1980), 

Rogers et al. (1994), Yang and Zhang (2000), among many other researchers, developed the 

methodologies for historical volatility estimation; Engle (1982), Bollerslov (1986), Nelson 

(1991), Baillie et al. (1996), Bollerslev and Mikkelsson (1996), among many others,  have 

made significant contributions to the GARCH-class models; Taylor (1982, 1986), Ghysels et 

al. (1996), Shephard (1996), Ruiz (1994), Danielsson (1994), Andersen and Sørensen (1996), 

Kim et al. (1998), Jacquier et al. (1994), among many others, have significantly studied  the 

stochastic volatility models. All these different approaches in estimating the daily return 

volatility employ the interday return information. Therefore, the trading dynamics during a 

trading day are not incorporated in these methods. 

Since the late 90s, new methodologies have been advocated to estimate the daily 

return volatility with the availability of intraday high frequency return data. As non-

parametric and model-free approaches, these methods allow one to estimate the daily return 

volatility by exploiting the rich information contained in the intraday return data. Andersen et 

al. (1997a, 1997b, 2001, 2003) propose to use the aggregated squared returns obtained in 

evenly spaced short intervals within a certain trading day to approximate the daily return 

volatility.  Therefore, the measure of a daily return volatility based on the intraday high 

frequency data is related to these subintervals in a trading day. Zhang et al. (2005) propose a 

two-scale realized return volatility estimator to measure the daily volatility. This method, 

instead of using the returns in the subintervals within a trading day, partitions the intraday 

data into a certain number of sub-grids, and this is the first scale construction in the estimator. 

In addition, the tick-by-tick returns in the intraday data are considered in the estimator, and 

this is the second scale in the estimator. The daily volatility estimated in this way is closely 

related to the number of the sub-grids within a certain trading day.  

 The above-mentioned realized return volatility estimators using intraday data have 

imposed significant impacts on return volatility estimation and forecasting (Andersen et al., 

1998; Aїt-Sahalia et al., 2008), and volatility-related trading practices as well. Motivated to 

pursue a better understanding of these two different realized return volatility estimators, we 

aim to complement the existing literature by exploring their finite-sample statistical 

attributes. Specifically, the authors denote the realized volatility estimator proposed by 

Andersen et al. (2001, 2003) as RV, and study the impacts on the dynamics of RV estimates 

and on their statistical properties by using different subintervals in the estimation; the authors 

denote the realized volatility estimator developed by Zhang et al. (2005) as TSRV, and 

explore the impacts on the dynamics of TSRV estimates and on their statistical properties by 

employing different sub-grids in the estimation.  

In this paper, by using the intraday high frequency data of NASDAQ 100 tracking 

stock in one year period from 01/02/2003 to 12/31/2003, the authors estimate the daily RVs 

using 30-second, 1-minute, 5-minute, 10-minute, 15-minute, 30-minute subintervals in each 

trading day; we estimate the daily TSRVs with 50, 100, 150, 200, 250, and 300 sub-grids in 

each trading day. Based on the real intraday data but different sampling scenarios we 

investigate the characteristics of these two different estimators by (1) comparing the 

dynamics in the estimates of RV and TSRV, respectively, and (2) analyzing their finite-

sample statistical attributes. The empirical results in this paper confirm the existing literature 

that RV is significantly impacted by the choice of the subintervals, and TSRV is significantly 
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impacted only when the sub-grids are small. Furthermore, the finite-sample statistical 

properties of RV and TSRV are closely related to the different sampling scenarios. 

The remainder of this paper is structured as follow. In Section 2, the authors briefly 

introduce the RV and TSRV, and their estimation procedures as well. Section 3 presents the 

data. In Section 4, the empirical results are documented and analyzed. Section 5 concludes.  

 

RV and TSRV 

 

Both RV and TSRV are governed by the assumption that the logarithms of a stock’s 

trading prices follow a continuous semi-martingale. That is, the log price process yt is 

modeled by the following stochastic differential equation: 

 

                                              dyt = µ t dt + σt dWt                                                                                             (1)                         

                                          

where µ t  is the drift at time t, σt  is the volatility of return process of yt at time t, Wt  is a 

standard Brownian process. Given the dynamics of σt at each time t in a time period [0, T], 

one is interested in calculating the integrated variance 2

0

T

t
dtσ∫ . When T = 1,  one calculates 

the daily integrated variance. However, the intraday trading prices are not continuous. 

Therefore, one can only find the approximation for the integrated variance 2

0

T

t dtσ∫ . Both 

RV
2
 and TSRV

2
 are developed to serve as an estimator of 2

0

T

t
dtσ∫  with different approaches. 

In this study, the authors follow the literature to focus on the RV and TSRV, which are the 

square root of the estimated integrated variance.  

 

RV Estimator 

 

A daily RV is calculated by splitting a trading day into equally spaced subintervals, 

and then by aggregating the squared returns in these subintervals. It is proved by Andersen et 

al. (2001) and Barndorff-Nielsen and Shephard (2002) that RV is a consistent and robust 

estimator of the true return volatility as the subintervals approach to zero. Therefore in the 

estimating process, a tiny subinterval is specified to obtain the RV. The daily RV using the 

intraday return data is calculated as: 

                                  
1

2 2

1

2

( ) ,  2,...,  1
M

j j

j

RV y y j M
−

+

=

= − = −∑                                                   (2) 

where yj is the log price at time j in a certain trading day, M the total number of the 

subintervals designated in a certain trading day. As shown in formula (2), RV is calculated 

using the extracted log prices at time points j =1, 2, 3, …, M. Therefore this method makes 

use of the M observations in the intraday data. In the U.S., the stock market operates from 

9:30am to 16:00pm with 6.5 hours of trading time. The authors specify the length of the 

subintervals in each trading day as 30 seconds, 1 minute, 5 minutes, 10 minutes, 15 minutes, 

and 30 minutes. Therefore, the corresponding M is 780, 390, 78, 39, 26, and 13, respectively. 

As is shown in formula (2), the RV is directly related to the choice of M, which is determined 

by the length of subintervals.  

 

TSRV Estimator 

 

 The RV estimator only exploits a small number of the return observations in an 

intraday high frequency data. In contrast, the TSRV estimator employs all the observations in 
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an intraday data. According to Zhang et al. (2005), this method incorporates sub-sampling, 

averaging, and bias correction in the computation of the daily realized return volatility. 

Suppose 1{ ,..., }nt tΤ =  is the times of the observed log prices in a certain trading day. Then T 

is partitioned into K non-overlapping sub-grids with equal number of observations. The kth (k 

= 1, 2,…, K) sub-grid extracts the observations from the whole intraday data with following 

times attached: 

1 1 1{ , , , }
kk k k K k n KT t t t

− − + − +
= K , where nk is the largest integer so that the 1( )

kk n Kt th
− +

observation 

is included in Tk.  The TSRV is calculated as follow: 

 

                   
1 1

1 1

2 2 2

1 , ,

1
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i i j j

i i k j j

K

t t t t

k t t T t t T

n
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K n+ +

+ +
= ∈ ∈

= − − −∑ ∑ ∑                                          (3) 

where yj is log price process, n is total observations in a intraday data, and 
1n K

n
K

− +
= . 

 From the formula (3), it is shown that the estimates of the TSRV are related to the 

value of K, the number of the sub-grids partitioned in an intraday data. The first part in the 

formula (3) is to sample and average the squared returns across all the K sub-grids, and the 

second part takes a portion of aggregated squared returns obtained from the total 

observations. According to Zhang et al. (2005), the second part is introduced in the TSRV 

estimation to correct the microstructure noise in intraday high frequency data. The extent of 

the correction of the bias partly depends on n , which is determined by K as well. In our 

study, in order to investigate the impacts of the K on the dynamics of the estimated TSRV, 

we specify K as 50, 100, 150, 200, 250, and 300, respectively.  

Regarding the asymptotic properties of RV and TSRV, interested readers may refer to 

Andersen et al. (2001, 2003), Barndorff-Nielsen and Shephard (2002), and Zhang et al. 

(2005). The authors’ study focus on the RV and TSRV estimates under the finite-sample 

circumstances with real data. 

 

DATA 

 

The study in this paper aims at exploring the properties of the daily RV and TSRV 

estimates obtained from varying subintervals and sub-grids in each trading day, respectively. 

This requires the intraday high frequency data be frequent enough. The NASDAQ 100 index 

tracking stock (QQQ) was intensively traded in each trading day in the market. Therefore the 

authors choose in this study QQQ’s intraday high frequency data in a one-year period from 

01/02/2003 to 12/31/2003 with 252 trading days. The data set is TAQ consolidated quote of 

QQQ downloaded from Wharton Research Data Services (WRDS). In each trading day, the 

trading time spans from 9:30am to 16:00pm. 

 Prior to the estimation of RV and TSRV, a cleaning procedure is applied to the 

original intra-daily high frequency data to remove the typos and unusual log price jumps.  

  

EMPIRICAL RESULTS AND ANALYSIS 

 

Dynamics of the RV and TSRV Estimates 

 

 Using the 30-second, 1-minute, 5-minute, 10-minute, 15-minute, and 30-minute 

subintervals, as explained in Section 2, we obtain the daily RV estimates. Figure 1 is the time 

plots of these RVs. As is shown in the figure, the estimated RVs exhibit a dynamic pattern in 

their magnitudes. However, among these RV estimators obtained from the different 
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subintervals, the overall evolutions in their paths in the one-year horizon are quite similar. 

The remarkable peaks and troughs almost appear at the same trading day across the different 

RV estimates. Furthermore, as the length of a subinterval becomes shorter, the fluctuation of 

the corresponding RV estimates becomes more intensive. It is observed that the RV estimates 

with the 30-second subinterval exhibits the highest extent in fluctuation as indicated in Figure 

1 (Appendix) 

 

Employing 50, 100, 150, 200, 250, and 300, respectively, we obtain the TSRV estimates 

using the intraday data. Figure 2 plots these estimates as indicated in Figure 2 (Appendix) 

 

 In Figure 2, it appears that the TSRVs exhibit quite mild change in the magnitudes, 

especially when the sub-grids are great 100. Moreover, as the sub-grids are greater than 200, 

the TSRV estimates in each trading day are almost the same for different sub-grids. Similar to 

the RV estimates, the TSRVs obtained from different sub-grids exhibit similar patterns of the 

ups and downs in the one-year trading horizon. In addition, the peaks and troughs appear at 

almost the same trading day.  

 

The Statistical Properties of RV and TSRV 

 

As a preliminary analysis of the RV and TSRV estimates, the statistical summaries 

are listed in Table 1 and Table 2, respectively. In addition, we adopt a standard statistical 

measurement of variation, the coefficient of variation (CV), to measure the extent of the 

dispersion existed in each of the RV and TSRV estimates. The CV is defined as: 

                            ( ) 100
s

Coefficient of Variation CV
x

= ×                                                 (4) 

where s is the sample standard deviation (volatility of volatility) of the volatility series,  and 

x  is the sample mean of either RV or TSRV estimates as indicated in Tables 1 and 2 

(Appendix) 

As is shown in the two tables, the sample means of the RV estimates decrease as the 

length of a subinterval increases. On the other hand, the sample means of the TSRV estimates 

remain stable with the different sub-grids. It appears that when sub-grids are at least 100, the 

TSRVs present small changes in both kurtosis and skewness. The coefficients of variation 

associated with the TSRVs are smaller and more stable than those of RVs. For the RV 

estimates, when the length of a subinterval increases, the standard deviation decreases at first, 

and reaches the lowest at the 5-minute subinterval, then increases again. Similar pattern is 

observed in regard to the coefficients of the variation. Our findings confirm Andersen et al. 

(2001) that a 5-minute may be a best choice for a subinterval in the RV estimation. Regarding 

the TSRV estimates, the standard deviations only exhibit slight increases with the larger sub-

grids.  

 To investigate the distributional dynamics of the RVs and TSRVs associated with the 

different sampling scenarios, we plot the kernel density curves for these two return volatility 

estimates in Figure 3 and Figure 4, respectively (Appendix). 

As is shown in Figure 3, the kernel density curves of the RV estimates are right 

skewed with the exception that the curve associated with a 5-minute subinterval is close to a 

normal distribution. In contrast, it appears from the Figure 4 that the differences between the 

TSRVs’ kernel density curves are not significant, especially when the sub-grids are at least 

100. Moreover, the kernel density curves of the TSRVs are quite close to normal distributions 

(Appendix). 
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Long Memory Property of the RV and TSRV 

 

One stylized fact documented in the literature is the long memory property existed in 

the return volatility in many financial assets. See Andersen et al. (2001, 2003). Furthermore, 

Lo (1991), Robinson (1991), Ding et al. (1993), Baillie et al. (1996), and Lobato and Savin 

(1998) explore the theoretical aspects of the long memory. In our study, we focus on 

exploring the long memory behaviors in both RVs and TSRVs under the different sampling 

scenarios, as explained in the previous sections. Specifically we estimate the sample 

autocorrelation function (ACF) associated with each of the RV and TSRV estimates. As an 

illustrative purpose, we choose in the Figure 5 and Figure 6 (Appendix) to present the plots of 

the ACFs for the RV with a 5-minute subinterval and the TSRV with 250 sub-grids, 

respectively (Other ACF plots exhibit similar patterns as those in these two figures, and they 

are available upon request). As can be seen from the plots, the estimated sample 

autocorrelation function of each of the volatility series fades out very slowly over a distant 

horizon, and exhibits strong and persistent correlations. This visual analysis presents some 

evidences that the RV and TSRV estimators could possess the so-called long memory, or 

fractionally integrated pattern, as is described in Andersen et al. (2001). In this case, the time 

series only can be differenced using a fractional differencing parameter, d, which is in the 

range of (0, 1). To test the hypothesis that both RV and TSRV estimates don’t follow a long 

memory process, we implement an R/S test proposed by Mandelbrot (1972) and extended by 

Lo (1991) to each of the RV and TSRV estimates. In this test, we set the bandwidth of the 

cross variance as 10, and the significance level is specified as 5%. The critical value at 5% 

significance level is 1.747. Table 3 (Appendix) lists the R/S statistics of the RV and TSRV 

estimates, respectively. 

 As is shown in the Table 3, all the R/S statistics obtained for RV and TSRV estimates 

are greater than the critical value at the 5% significance level. The hypothesis that there is no 

long memory in each of the volatility series is rejected. Therefore, the test suggests that all of 

the RV and TSRV estimates follow a long memory, regardless of the two different estimation 

methods. Further, the authors estimate the fractional differencing parameter d for each of RV 

and TSRV estimates by adopting a GPH estimator proposed by Geweke and Porter-Hudak 

(1983). In calculating the GPH estimates, the Fourier frequency m is set to be T/2, where T is 

the total observations in the RV and TSRV series. Table 4 (Appendix) lists the estimation 

results for the d̂ ’s.  

 The GPH estimates obtained from the RV and TSRV series reveal that all of the 

fractional differencing parameters are in the range of (0, 1). The GPH estimates d̂ ’s for RVs 

are in a wide range, from 0.220 to 0.519. As the length of a subinterval increases, the 

fractional differencing parameter decreases. As indicated in the literature, when a fractional 

differencing parameter d is in the range of 0.5 and 1, the volatility series is non-stationary. 

Regarding TSRVs, when the number of the sub-grids is less than 150, the resulted GPH 

estimates are less than 0.5, implying a stationary pattern. When the number of the sub-grids is 

at least 200, the corresponding d̂ ’s are greater than 0.5, indicating that the TSRVs follow a 

non-stationary pattern as the sub-grids are large. Overall, the fact that all of the estimated 

fractional differencing parameters are less than 1 confirms the conclusion made from the R/S 

long memory hypothesis test. Therefore, both RV and TSRV follow a long memory process 

regardless of the two different estimation methodologies. 
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CONCLUSIONS 

 

In this paper, the authors complement the existing literature by exploring the 

dynamics in the daily estimates of the two influential return realized volatilities obtained 

using intraday high frequency, as well as their finite-sample properties. We employ the 

intraday data of the actively traded NASDAQ 100 tracking stock in our empirical study. Our 

study focuses on the realized volatility estimators with two different estimation approaches. 

The daily return realized volatility proposed by Ansersen et al. (2001, 2003), sums up the 

squared returns extracted in equally spaced subintervals within a certain trading day. It is 

denoted as RV in our study. The daily two-scale realized volatility developed by Zhang et al. 

(2005) is constructed by combining sub-sampling, averaging and bias correction in the 

intraday data within a certain trading day. It is denoted as TSRV in our study. Our empirical 

results show that the selection in the length of a subinterval in the RV estimation procedure 

has significant impacts on the magnitudes of the estimated RVs. In contrast, the number of 

the sub-grids adopted in the TSRV estimation process imposes mild effects on the magnitude 

of the estimated TSRV as the sub-grids are at least 100. Moreover, TSRV presents slight 

differences in their distribution associated with different sub-grids. And RV’s distributions 

are more sensitive to the different subintervals. However, the RV is very close to a normal 

distribution as the subinterval is 5 minutes. These findings are in line with the existing 

literature (Andersen et al., 2001, 2003) even though the financial asset we selected in our 

study is different. In addition, the coefficients of variation (CV) indicate that the volatility of 

volatility embedded in the RV estimates is significantly impacted as the length of a 

subinterval is beyond 10 minutes. The impacts on the volatility of volatility in TSRV by the 

number of the sub-grids appear to be mild. Finally, our results confirm the existing literature 

in that both RV and TSRV follow a long memory process. However, we find that fractional 

differencing parameters are highly impacted by the choice of the subintervals in the RV and 

the choice of sub-grids in the TSRV. Specifically, the TSRVs turn out to follow a non-

stationary fractional integration as the sub-grids are at least 200.  

The empirical results obtained from the real intraday data may add some insights into 

the following aspects about the estimation of a return volatility using intraday high frequency 

data: (1)  choosing a subinterval can have significant impacts on the estimates and 

distributions of the realized volatility proposed by Andersen et al. (2001, 2003), (2) choosing 

the number of sub-grids can have significant impacts on the behavior of the fractional 

integration in the TSRV estimator proposed by Zhang et al. (2005). The implication to 

researchers and practitioners is that the finite-sample behaviors of the return volatility 

obtained from intraday high frequency data under different sampling scenarios can 

remarkably vary when one use the alternative volatility estimation methods. Therefore, it is 

important to take account of these factors in the volatility-related modeling, trading, and 

forecasting.  

 

 

 

 

 

 

 

 

 

 



Journal of Finance and Accountancy  

Investigation on two alternative, Page 8 

 

APPENDIX 

Table 1 The statistical summary of the RV estimates 

 

 30-Second 1-Minute 5-Minute 10-Minute 15-Minute 30-Minute 

Standard Deviation 0.00393 0.00348 0.00326 0.00336 0.00347 0.00382 

Mean 0.01571 0.01428 0.01315 0.01264 0.01232 0.01159 

Kurtosis 0.31966 0.61143 2.32769 4.23126 3.76897 0.36140 

Skewness 0.61579 0.59184 0.77268 1.15160 1.04215 0.65356 

Range 0.02036 0.02039 0.02463 0.02702 0.02832 0.02071 

Coefficient of Variation 25.0075 24.3796 24.7650 26.6154 28.1793 32.9625 

 

Table 2 The statistical summary of the TSRV estimates 

 

 K = 50 K = 100 K = 150 K = 200 K = 250 K = 300 

Standard Deviation 0.00276 0.00279 0.00284 0.00288 0.00292 0.00294 

Mean 0.01171 0.01183 0.01207 0.01224 0.01238 0.01249 

Kurtosis 2.89360 1.22739 1.03331 1.01424 1.02190 1.04941 

Skewness 0.88800 0.49166 0.42989 0.43546 0.44581 0.46252 

Range 0.02068 0.01826 0.01737 0.01774 0.01797 0.01810 

Coefficient of Variation 23.6142 23.5897 23.5452 23.5516 23.5512 23.5817 

 

Table 3 The estimated R/S statistics for RV and TSRV estimates 

 

RV 

 30-Second 1-Minute 5-Minute 10-Minute 15-Minute 30-Minute 

S/R 2.012 1.950 1.927 1.925 1.852 1.930 

TSRV 

  k = 50 k =100 k =150 k =200 k =250 k =300 

S/R 1.807 1.878 1.902 1.912 1.920 1.924 
        Note: Bandwidth q = 10, Significance level = 5%, Critical value = 1.747 
 

Table 4 Fractional differencing parameter: GPH estimators of the RV and TSRV 

series 

 

RV (Fourier Frequency: m = T/2) 

 30-Second 1-Minute 5-Minute 10-Minute 15-Minute 30-Minute 

d̂  0.519 0.477 0.439 0.389 0.288 0.220 

Standard Error (0.075) (0.064) (0.065) (0.056) (0.076) (0.062) 

TSRV (Fourier Frequency: m = T/2) 

  k = 50 k = 100 k = 150 k = 200 k = 250 k = 300 

d̂  0.374 0.467 0.497 0.515 0.520 0.521 

Standard Error (0.067) (0.066) (0.065) (0.065) (0.063) (0.062) 
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Figure 1 The time plots of the estimated RVs with different subintervals 

 

Figure 2 The time plots of the estimated TSRVs with different sub-grids 
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Figure 3 The kernel density curves of the RV estimates with different subintervals 

 

 

Figure 4 The kernel density curves of the TSRV estimates with different sub-grids 
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Figure 5 The ACF plot of the RV estimates with a 5-minute subinterval 

                 

 

 

Figure 6 The ACF plot of the TSRV estimates with 250 sub-grids 
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